Name:												
NetID:			-	Lecture: A				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(8 points) Thone fruit or a mix cherry, apricot, a	•	stinct) fruits.	The	availa	ble fru							
Solution:												
There are 7 c total number of c is $7 + 21 + 35 = 6$	· - ·											
(5 points) St are on individual	ate the negation predicates.	of the follow	ring cl	aim, 1	noving	g all ne	gatio	ns (e.g	g. "r	not")	so th	at they
There is a c	d lorm room d , such	h that d has	green	walls	and d	has n	o wine	dow.				
Solution: For e	very dorm room	d, d has wall	ls that	aren	't gree	n or d	has a	wind	ow.			
(2 points) Che	eck the (single) b	ox that best	chara	cteriz	es eacl	n item.						
	of ways to select		$\binom{16}{3}$			$\binom{16}{4}$		$\binom{2}{3}$	$\binom{0}{3}$			
sequence of 17 possible variet	7 flowers chosen f ties.	from 4	$\binom{20}{4}$)]	$\binom{21}{3}$		4	17			

Name:												
NetID:			_	Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(9 points) Use proof by contradiction to show that there are no positive integer solutions to the equation $4x^2 - y^2 = 1$.

Solution: Suppose not. That is, suppose that there are positive integers x and y such that $4x^2 - y^2 = 1$. Factoring the lefthand side, we get (2x - y)(2x + y) = 1. (2x - y) and (2x + y) must be integers since x and y are integers. So (2x - y) and (2x + y) are either both 1 or both -1.

Case 1: (2x - y) = 1 and (2x + y) = 1. Adding the two equations gives us 4x = 2, so x = 1/2.

Case 2: (2x - y) = -1 and (2x + y) = -1. Adding the two equations gives us 4x = -2, so x = -1/2.

In both cases, x must have a non-integer value, contradicting our assumption that x is an integer.

(6 points) In the game Tic-tac-toe is played on a 3x3 grid and a move consists of the first player putting an X into one of the squares, or the second player putting an O into one of the squares. The board cannot be rotated, e.g. an X in the upper right corner is different from an X in the lower left corner. How many different board configurations are possible after four moves (i.e. two moves by each player)?

Solution: You need to pick 2 of the 9 squares to contain the X's, and then 2 of the remaining 7 squares to contain the O's. So the total number of choices is $\binom{9}{2}\binom{7}{2}$.

Name:												
NetID:				Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(8 points) Ar steps at a time. I steps. How many	· .	(ordered) se	quen		_					_	_	
Solution: The with three doubles	here is one way to-steps.	o do it with	only	single	steps.	Likew	ise, th	ere is	only	one	way	to do it
There are 5 was two double steps	ays to order one or plus two single s		olus fo	our sin	gle ste	eps. Ar	nd the	re are	$\binom{4}{2}$:	= 6 w	ays t	o order
So the total n	umber of options	is $1 + 1 + 5$	+6=	= 13.								
(5 points) Stare on individual	ate the negation predicates.	of the follow	ing c	laim, r	noving	g all ne	egation	ns (e.g	g. "n	ot")	so th	at they
There is a poisonous.	bug b , such that	for every p	lant	p, if b	pollin	nates p	and	p is s	show	y, the	en p	is
Solution: For opoisonous.	every bug b , then	re is a plant	p, su	ich tha	at b po	ollinate	es p a	nd p	is sh	owy,	but p	o is not
(2 points) Che	eck the (single) b	ox that best	chara	acteriz	es eacl	h item.						
flowers chosen	of ways to select an from 4 possible of each variety).		$\begin{pmatrix} 1 \\ \xi \end{pmatrix}$			$\binom{20}{4}$ $\binom{21}{4}$		$\binom{2}{3}$	$\binom{0}{3}$ $\binom{17!}{4!}$	√ 		

Name:												
NetID:				Lecture: A				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(8 points) Ign vs. a tail. What out the decimal e		t he gets exε	actly 7	head	ls? Giv	ve an e	exact			_	_	
Solution: To contain a head.	There are 2^{10} sequence of the chance of g			ips. '	Γhere a	are $\binom{10}{7}$) way	rs to	pick	7 of t	hese	flips to
			$\frac{\binom{10}{7}}{2^{10}}$)								
(5 points) St are on individual	ate the negation predicates.	of the follow	ing cla	aim, r	noving	all ne	gatior	ns (e.	g. "r	not")	so th	at they
For every M	Meerkat m , if m is	in New Yorl	k, thei	n m i	s not in	n the v	vild o	r m is	s lost			
Solution: Ther	e is a Meerkat m	such that m	is in	New	York,	but m	is in	the w	rild a	nd m	is no	ot lost.
(2 points) Che	eck the (single) b	ox that best	chara	cteriz	es each	item.						
The number o exactly 7 1's.	f bit strings of len	gth 20 with	$\binom{26}{7}$] /]	$\binom{27}{7}$ $\binom{20}{1}$			$\binom{26}{6}$			

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(9 points) Use proof by contradiction to show that $\sqrt{2} + \sqrt{3} \le 4$.

Solution: Suppose not. That is, suppose that $\sqrt{2} + \sqrt{3} > 4$.

Then $(\sqrt{2} + \sqrt{3})^2 > 16$. (All the numbers involved are positive.) So $2 + 2\sqrt{2}\sqrt{3} + 3 > 16$. So $2\sqrt{2}\sqrt{3} > 11$.

Squaring both sides again, we get $4 \cdot 2 \cdot 3 > 121$. That is 24 > 121. But this last equation is obviously false. So our original assumption must have been wrong and therefore $\sqrt{2} + \sqrt{3} \le 4$.

(6 points) Use the binomial theorem to find a closed form for the summation $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$. Make sure it's clear how you used the theorem.

Solution: The binomial theorem states that $(x+y)^n = \sum_{k=0}^n x^k y^{n-k} \binom{n}{k}$.

Setting x = -1 and y = 1 gives us $(-1+1)^n = \sum_{k=0}^n (-1)^k 1^{n-k} \binom{n}{k}$

That is $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.

Name:												
NetID:				Lecture: A				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(8 points) If <i>u</i> For example, "rth any repeated char	_	of "warthog	g" but	"aho	g" is n	ot. Su	ippose	e that	w is		_	
Solution: A because we only g like, the backward		substring if	the st			- ·						- /
Method (1): Some for substrings of black $\binom{k}{2}$ ways to $\binom{k}{2}$		need to pick	a set	of two	o disti	nct pos	sitions	s (stai		_		_
Method (2): S which we must ch	Suppose a "positi oose an unordere					_				_		s, from
(5 points) Sta are on individual	ate the negation predicates.	of the follow:	ing cla	aim, n	noving	all ne	gation	ns (e.g	g. "n	not")	so th	at they
There is a so	$\sup s$ such that s	s is tasty and	d s do	es not	conta	in mea	ıt.					
Solution: For ev	very soup s, s is	not tasty or	$s ext{ cont}$	tains 1	neat.							
(2 points) Che	eck the (single) b	ox that best	chara	cterize	es each	item.						
among 8 variet	vs can I choose 6 ties, if I can have tels from any typ	any	8! 6!2! 14! 6!7!]	13! 6!7!		14! 9!5! 6 ⁸				