Name:												
NetID:				Lecture: A				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(7 points) Le X define its imag Informally explain		$= \{f(s) \in Y$	s	$\in S$ }.	Is it th	he case	e that	f(A	$\cap B)$	$\subseteq f$	$(A) \cap$	
Solution: T an x in $A \cap B$ such in both $f(A)$ and												
(8 points) Che	eck the (single) b	ox that best	char	acterize	es each	ı item.						
$\mathbb{P}(A\cap B)\subseteq \mathbb{P}$	$(A \cup B)$	always $\sqrt{}$]	somet	imes		ne	ver				
Pascal's iden that $\binom{n}{k}$ is equ	,	$\binom{n-1}{k} + \binom{n-1}{k-1}$	V	′	$\binom{n-1}{k}$ +	$\vdash \binom{n-1}{k+1}$]	$\binom{n-1}{k}$) + (1	$\binom{n-2}{k}$	
If $f: \mathbb{N} \to \mathbb{P}(\mathbb{Q})$ then $f(1.73)$ is	-, g	a ration			a se	t of ra	tional wer se			unc	lefine	d
Set B is a part set A . Then $ A $	ition of a finite $A = B $.	always		som	etimes	\ \/	<u>,</u>	never	Г	7		

Name:												
NetID:			_	${ m L}\epsilon$	В							
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Graph G is at V is the set o E is the set o ab (or ba) is t	f nodes.	a and b.	C		<u>d</u>	a			b		(h)—	(k) (j)
Let $f: V \to \mathbb{F}$	$\mathbb{P}(E)$ be defined by	$y f(n) = \{e$	$\in E \mid$	n is an	n endp	oint of	$\{e\}.$	And le	et T =	= { <i>f</i> ($(n) \mid r$	$n \in V$
(6 points) Fill	l in the following	values:										
V = Solutio	on: 8											
$f(d) = \mathbf{Solut}$	ion: $\{cd, ad, dg\}$											
f(h) = Solut	ion: $\{hj\}$											
(7 points) Is T why T does or do	T a partition of E besn't satisfy that		of the	condit	ions re	equired	l to b	еара	artitic	on, br	riefly	explaiı
Solution: N so T contains the different but share					_				. ,		-	
(2 points) Che	eck the (single) b	ox that best	char	acteriz	es each	ı item.						
If $f: \mathbb{P}(\mathbb{Q}) \to$ then $f(\{3\})$ is	2	an integ	· -	$\sqrt{}$		of int]	unde	efined	

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Graph G is shown below with set of nodes V and set of edges E.

Let $F: V \to \mathbb{P}(V)$ such that $F(n) = \{v \in V \mid \text{ there is a cycle containing } n \text{ and } v\}$. Let $T = \{F(n) \mid n \in V\}$.

(6 points) Fill in the following values:

$$F(k) =$$

Solution: $\{m, d, k\}$

$$F(b) =$$

Solution: $\{a, b, c, e, n, h\}$

$$|T| =$$

Solution: 4

(7 points) Is T a partition of V? For each of the three conditions required to be a partition, explain why T does or doesn't satisfy that condition.

Solution: No, it is not a partition of V. There is partial overlap between F(c) and F(h). But T doesn't contain the empty set and covers all of V.

(2 points) State Pascal's identity.

Solution:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

Name:												
NetID:			_	Le	$\operatorname{ctur}_{f \epsilon}$	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(7 points) Su Let's define $T(n)$ T(n) does not for can cause one of t	m a partition of \mathbb{Z}). Notice the control of the control	nat n	$\in T(n$) for a	ny int	eger 1	ı. Th	ie col	lectio	n of	all sets
Solution: For $ a-b \le 10$) show	or full credit, it's ϵ ving how partial ϵ				lained	specifi	ic exa	mple	(e.g.	using	the r	elation
Here's a more a, b , and c such the must contain c are that aRc . So there	nd b. So $T(a)$ an	but not aR d $T(c)$ overl	c. Sin	nce aRb	T(a)	must	conta	$\sin a$	and b	. Sinc	ce bR	c, T(c)
Making the ab	oove argument ful	l formal wou	uld re	equire u	sing th	e refle	exive a	and sy	ymme	etric p	prope	rties of
(8 points) Che	eck the (single) be	ox that best	char	acterize	es each	item.						
If $f: \mathbb{P}(\mathbb{Q}) \to$ then $f(3)$ is		an integ	Ē			of inte	_			unde	fined	$\sqrt{}$
$\{\mathbb{N}\}$ is a partit	tion of \mathbb{N} .	tru	ie _	$\sqrt{}$	false							
$\mathbb{P}(A) \cup \mathbb{P}(B) =$	= $\mathbb{P}(A \cup B)$ a	lways		sometii	mes	$\sqrt{}$	nev	ver [
$\binom{n}{0}$	-1 0	1		2		r	ı		unde	efined		

Name:												
NetID:			-	Lecture:				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(7 points) Su Then define $P =$	appose that $g: A$ $\{F(y) \mid y \in B\}$									<i>A</i>	g(x)	$)=y\}.$
Solution: Y y . So x is in $F(g(y))$ has at least one		e in any oth	er set	produ	ced by		_		_		_	
(2 points) Sta	ate the binomial	theorem.										
Solution:												
		$(x+y)^r$	$n = \sum_{k=1}^{n}$	$\sum_{k=0}^{n} \binom{n}{k}$	$x^{n-k}y^k$	k						
(6 points) Cho	eck the (single) b	ox that best	char	acteriz	es each	ı item.						
$\mathbb{P}(A) \cap \mathbb{P}(B) =$	$= \mathbb{P}(A \cap B)$	always $\sqrt{}$	′	somet	imes		ne	ver				
$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	-1 0	1			2	n			und	efined	l	
I ℙ({4, 5, 6, 7,	8} × Ø) Ø	[] {W	, [\neg	0	7	1 .	/	25]	25

Name:												
NetID:			-	Lecture:				\mathbf{B}				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R})$ Let $T = \{f(x, y)\}$	(2) be defined by $ (x,y) \in \mathbb{R}^2$.	$f(x,y) = \{(x,y) = \{(y,y) \mid y \in X\}\}$	(p,q)	$\in \mathbb{R}^2 \mid \Xi$	$\exists \alpha \in \mathbb{R}$	$\mathbb{R}, (p, q)$	$=\alpha($	$\{x,y\}$				
(6 points) Ans	swer the following	g questions:										
f(0,0) =												
Solution: $\{(0, 0)\}$	(0,0)											
Describe (at a	high level) the e	lements of f	f(0, 36)	6):								
Solution: $f($	(0,36) is the line	passing thro	ough	the orig	gin and	d(0, 36)	i).					
Give an eleme	nt of $\mathbb{P}(\mathbb{R}^2)$ – T	7:										
Solution: Ma	any possible answ	ers here. Fo	r exa	mple, (, or ar	ny finit	e set	or an	y cir	cle.		
(7 points) Is T why T does or do	'a partition of \mathbb{R}^2 esn't satisfy that		of the	e condi	ions re	equired	l to b	e a pa	rtitio	on, bi	riefly	explain
Solution: To of T do cover all of (bad).	his is not a partitof the plane (good					-		()	/			
(2 points) Che	eck the (single) be	ox that best	char	acteriz	es each	item.						
If $f: \mathbb{Q} \to \mathbb{P}(\mathbb{Q})$ then $f(1.73)$ is	~	a ratio			a se	t of ra		<u> </u>	/	ur	ıdefin	ed