| Name: | | | | | | | | | | | | | |---|--------------------|-------------------------------------|------------|------------|--------------------|--------------------|------------------|-------|------------------|---------------|------------------|---| | NetID: | | | _ | Lecture: | | | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 11 12 | | 1 | 2 | 3 | 4 | 5 | 6 | | | (7 points) Let X define its imag Informally explain | | $= \{ f(s) \in Y$ | $r \mid s$ | $\in S$ }. | Is it th | ne case | e that | f(A | $\cap B)$ | $\subseteq f$ | $(A) \cap$ | (8 points) Che | eck the (single) b | ox that best | char | acteriz | es each | item. | | | | | | | | $\mathbb{P}(A \cap B) \subseteq \mathbb{P}$ | $(A \cup B)$ | always |] | somet | imes | | ne | ver | | | | | | Pascal's identification that $\binom{n}{k}$ is equal | 1 | $\binom{n-1}{k} + \binom{n-1}{k-1}$ | | | $\binom{n-1}{k} +$ | $\binom{n-1}{k+1}$ | |] | $\binom{n-1}{k}$ |) + (" | $\binom{n-2}{k}$ | | | If $f: \mathbb{N} \to \mathbb{P}(\mathbb{Q})$ then $f(1.73)$ is | ~ | a ratio | | | a se | t of ra | tional
wer se | | | uno | define | d | | Set B is a part set A . Then $ A $ | | always | | som | etimes | |] | never | | | | | Lecture: Name:_____ NetID:_____ A B Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6 Graph G is at right. V is the set of nodes. E is the set of edges. ab (or ba) is the edge between a and b. Let $f: V \to \mathbb{P}(E)$ be defined by $f(n) = \{e \in E \mid n \text{ is an endpoint of } e\}$. And let $T = \{f(n) \mid n \in V\}$. (6 points) Fill in the following values: $$|V| =$$ $$f(d) =$$ $$f(h) =$$ (7 points) Is T a partition of E? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition. (2 points) Check the (single) box that best characterizes each item. If $f: \mathbb{P}(\mathbb{Q}) \to \mathbb{N}$ then $f(\{3\})$ is an integer one or more integers a set of integers a power set undefined Name:_____ NetID:_____ Lecture: A B Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6 Graph G is shown below with set of nodes V and set of edges E. Let $F: V \to \mathbb{P}(V)$ such that $F(n) = \{v \in V \mid \text{ there is a cycle containing } n \text{ and } v\}$. Let $T = \{F(n) \mid n \in V\}$. (6 points) Fill in the following values: $$F(k) =$$ $$F(b) =$$ $$|T| =$$ (7 points) Is T a partition of V? For each of the three conditions required to be a partition, explain why T does or doesn't satisfy that condition. (2 points) State Pascal's identity. | Name: | | | | | | | | | | | | | |---|-------------------------------|---------------------------|----------|-----------|---------|--------|--------|-------|-------|---------|--------|----------| | NetID: | | _ | Lecture: | | | A E | | | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | (7 points) Su
Let's define $T(n)$
T(n) does not for
can cause one of | m a partition of \mathbb{Z} | t). Notice the Explain (i | nat n | $\in T(n$ |) for a | ny int | eger 1 | ı. Th | e col | lection | n of a | all sets | (8 points) Che | eck the (single) b | ox that best | char | acterize | es each | item. | | | | | | | | If $f: \mathbb{P}(\mathbb{Q}) \to$
then $f(3)$ is | | an integ | Ī | | | of int | | | | undel | fined | | | $\{\mathbb{N}\}$ is a parti | tion of \mathbb{N} . | tru | le | | false | | | | | | | | | $\mathbb{P}(A) \cup \mathbb{P}(B)$ = | $= \mathbb{P}(A \cup B)$ | always | | sometin | mes | | nev | er [| | | | | | $\binom{n}{0}$ | -1 0 | 1 | | 2 | | n | |] | unde | fined | |] | Name:_____ NetID:_____ Lecture: A B Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6 (7 points) Suppose that $g:A\to B$ is an onto function. Let's define $F(y)=\{x\in A\mid g(x)=y\}$. Then define $P=\{F(y)\mid y\in B\}$. Is P a partition of A? Briefly justify your answer. (2 points) State the binomial theorem. (6 points) Check the (single) box that best characterizes each item. $\mathbb{P}(A) \cap \mathbb{P}(B) = \mathbb{P}(A \cap B)$ always sometimes never $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ -1 $\boxed{}$ 0 $\boxed{}$ 1 $\boxed{}$ 2 $\boxed{}$ n $\boxed{}$ undefined $\boxed{}$ $\mid \mathbb{P}(\{4,5,6,7,8\} \times \emptyset) \mid \qquad \emptyset \qquad \boxed{\qquad} \qquad \{\emptyset\} \qquad \boxed{\qquad} \qquad 1 \qquad \boxed{\qquad} \qquad 25 \qquad \boxed{\qquad} \qquad 2^5 \qquad \boxed{\qquad}$ | Name: | | | | | | | | | | | | | |--|--|-----------------|------------|----------------------------|---------------------------------|-----------------|------------------|-----------|--------|--------|--------|---------| | NetID: | | | <u>-</u> | Lecture: | | | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R})$
Let $T = \{f(x, y) \}$
(6 points) Ans | $(x,y) \in \mathbb{R}^2$ be defined by $ (x,y) \in \mathbb{R}^2$. | | $(p,q)\in$ | $\in \mathbb{R}^2$ Ξ | $\exists \alpha \in \mathbb{R}$ | (p,q) | $=\alpha($ | $\{x,y\}$ | ·. | | | | | f(0,0) = | | | | | | | | | | | | | | Describe (at a | high level) the ϵ | elements of f | f(0, 36) | ß): | | | | | | | | | | Give an eleme | ent of $\mathbb{P}(\mathbb{R}^2)$ – T | T: | | | | | | | | | | | | (7 points) Is T why T does or do | a partition of \mathbb{R} besn't satisfy that | | of the | e condi | tions re | equirec | d to b | e a pa | rtitio | on, br | riefly | explain | (2 points) Che | eck the (single) b | ox that best | char | acteriz | es each | item. | | | | | | | | If $f: \mathbb{Q} \to \mathbb{P}(\mathbb{Q})$ then $f(1.73)$ is | a | a ratio | | | a se | t of ra
a po | tional
wer se | - | | un | define | ed |