Name:												
NetID:			_	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10 11 12		1	2	3	4	5	6	
(7 points) Let X define its imag Informally explain		$= \{ f(s) \in Y$	$r \mid s$	$\in S$ }.	Is it th	ne case	e that	f(A	$\cap B)$	$\subseteq f$	$(A) \cap$	
(8 points) Che	eck the (single) b	ox that best	char	acteriz	es each	item.						
$\mathbb{P}(A \cap B) \subseteq \mathbb{P}$	$(A \cup B)$	always]	somet	imes		ne	ver				
Pascal's identification that $\binom{n}{k}$ is equal	1	$\binom{n-1}{k} + \binom{n-1}{k-1}$			$\binom{n-1}{k} +$	$\binom{n-1}{k+1}$]	$\binom{n-1}{k}$) + ("	$\binom{n-2}{k}$	
If $f: \mathbb{N} \to \mathbb{P}(\mathbb{Q})$ then $f(1.73)$ is	~	a ratio			a se	t of ra	tional wer se			uno	define	d
Set B is a part set A . Then $ A $		always		som	etimes]	never				

Lecture:

Name:_____

NetID:_____

A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Graph G is at right. V is the set of nodes. E is the set of edges. ab (or ba) is the edge between a and b.

Let $f: V \to \mathbb{P}(E)$ be defined by $f(n) = \{e \in E \mid n \text{ is an endpoint of } e\}$. And let $T = \{f(n) \mid n \in V\}$. (6 points) Fill in the following values:

$$|V| =$$

$$f(d) =$$

$$f(h) =$$

(7 points) Is T a partition of E? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

If $f: \mathbb{P}(\mathbb{Q}) \to \mathbb{N}$ then $f(\{3\})$ is an integer one or more integers

a set of integers a power set

undefined

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Graph G is shown below with set of nodes V and set of edges E.

Let $F: V \to \mathbb{P}(V)$ such that $F(n) = \{v \in V \mid \text{ there is a cycle containing } n \text{ and } v\}$. Let $T = \{F(n) \mid n \in V\}$.

(6 points) Fill in the following values:

$$F(k) =$$

$$F(b) =$$

$$|T| =$$

(7 points) Is T a partition of V? For each of the three conditions required to be a partition, explain why T does or doesn't satisfy that condition.

(2 points) State Pascal's identity.

Name:												
NetID:		_	Lecture:			A E						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(7 points) Su Let's define $T(n)$ T(n) does not for can cause one of	m a partition of \mathbb{Z}	t). Notice the Explain (i	nat n	$\in T(n$) for a	ny int	eger 1	ı. Th	e col	lection	n of a	all sets
(8 points) Che	eck the (single) b	ox that best	char	acterize	es each	item.						
If $f: \mathbb{P}(\mathbb{Q}) \to$ then $f(3)$ is		an integ	Ī			of int				undel	fined	
$\{\mathbb{N}\}$ is a parti	tion of \mathbb{N} .	tru	le		false							
$\mathbb{P}(A) \cup \mathbb{P}(B)$ =	$= \mathbb{P}(A \cup B)$	always		sometin	mes		nev	er [
$\binom{n}{0}$	-1 0	1		2		n]	unde	fined]

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(7 points) Suppose that $g:A\to B$ is an onto function. Let's define $F(y)=\{x\in A\mid g(x)=y\}$. Then define $P=\{F(y)\mid y\in B\}$. Is P a partition of A? Briefly justify your answer.

(2 points) State the binomial theorem.

(6 points) Check the (single) box that best characterizes each item.

 $\mathbb{P}(A) \cap \mathbb{P}(B) = \mathbb{P}(A \cap B)$ always sometimes never

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ -1 $\boxed{}$ 0 $\boxed{}$ 1 $\boxed{}$ 2 $\boxed{}$ n $\boxed{}$ undefined $\boxed{}$

 $\mid \mathbb{P}(\{4,5,6,7,8\} \times \emptyset) \mid \qquad \emptyset \qquad \boxed{\qquad} \qquad \{\emptyset\} \qquad \boxed{\qquad} \qquad 1 \qquad \boxed{\qquad} \qquad 25 \qquad \boxed{\qquad} \qquad 2^5 \qquad \boxed{\qquad}$

Name:												
NetID:			<u>-</u>	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R})$ Let $T = \{f(x, y) \}$ (6 points) Ans	$(x,y) \in \mathbb{R}^2$ be defined by $ (x,y) \in \mathbb{R}^2$.		$(p,q)\in$	$\in \mathbb{R}^2$ Ξ	$\exists \alpha \in \mathbb{R}$	(p,q)	$=\alpha($	$\{x,y\}$	·.			
f(0,0) =												
Describe (at a	high level) the ϵ	elements of f	f(0, 36)	ß):								
Give an eleme	ent of $\mathbb{P}(\mathbb{R}^2)$ – T	T:										
(7 points) Is T why T does or do	a partition of \mathbb{R} besn't satisfy that		of the	e condi	tions re	equirec	d to b	e a pa	rtitio	on, br	riefly	explain
(2 points) Che	eck the (single) b	ox that best	char	acteriz	es each	item.						
If $f: \mathbb{Q} \to \mathbb{P}(\mathbb{Q})$ then $f(1.73)$ is	a	a ratio			a se	t of ra a po	tional wer se	-		un	define	ed