Name:_ NetID: Lecture: \mathbf{B} \mathbf{A} 9 **12** 1 $\mathbf{2}$ 3 Discussion: Thursday Friday 10 11 4 5 6

(15 points) Q needs your help designing an exploding keychain. To make it explode, James Bond must input 2 at least twice and also the sequence 01. These features can appear in any order, possibly separated. E.g. 0200112 will make it explode. The controller should read any sequence of the digits 0, 1, and 2. It should move into a final state as soon as it has seen the pattern, and remain in that final state as further characters come in. For efficiency, the state machine must be deterministic. Specifically, if you look at any state s and any action a, there is **exactly** one edge labelled a leaving state s.

Draw a deterministic state diagram that will meet his needs, using no more than 8 states and, if you can, no more than 6.

The target number of states was wrong in the problem description. This requires 9 states.

Name:												
NetID:			-	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(5 points) A A color digitized color digitzed pic		of three sucl	h arra	•	,	-						
Solution: I uncountably man	t's uncountable. The symptoms even for the symptoms of the sy						55 are	unco	unta	ble.	So th	ere are
(10 points) Cl	heck the (single)	box that bes	t cha	racteri	zes eac	ch iten	1.					
Every mathe has a finite fo	matical function rmula.	true		fals	e 🗸	′	not ki	nown				
The rational r	numbers	finite		count	ably in	finite		u	ncou	ntable	e	
If $\mathbb{P}(A)$ is couis A countable		always		.] S	sometir	mes		ne	ver			
The set of a with rational	ll polynomials coefficients.	finite	co	ountabl	ly infin	nite	$\sqrt{}$	unc	ount	able		
The set of all from the even integ	integers to	finite		cou	ntably	infini	te		unc	ounta	ıble	$\sqrt{}$

Name:												
NetID:			<u> </u>	Lecture:			A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
` - ,	et T be the relat $q \leq q$. Is T transit not.				,	- /					/	
	his relation is not $(0,10)T(-5,-5)$											
(10 points) Ch	neck the (single)	box that be	est cha	racteri	zes eac	ch item	1.					
-	numbers p , there umbers q such that	·	ti	rue	$\sqrt{}$	false	е					
Suppose I war 3 is	nt to estimate $\frac{103}{20}$	•		er bour bound		<u>]</u> /		exact a		F		
$\forall x \in \mathbb{R}, \text{ if } \pi = (\pi \text{ is the family})$	= 3, then $x < 20$. liar constant.)	${ m tr}$	ue -	√	false		u	ndefir	ned			
$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = 7 - \left\lfloor \frac{x}{3} \right\rfloor$	onto		not	onto		not	t a fu	nction	L			
$A\cap B\subseteq A$		or all sets A		<u> </u>	/	true	e for s	ome s	sets A	A and	В [

Name:												
NetID:				Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(5 points) Su	ippose that $f: \mathbb{N}$	$\rightarrow \mathbb{N}$ is such	that	f(n) =	$= n^2$. (Give a	recurs	sive d	efinit	ion o	f	
Solution:												
f(0) = 0, and	f(n+1) = f(n)	+2n+1 for	$n \ge$	0.								
You could also	o have used $f(n)$	= f(n-1) -	+2n -	– 1 for	$n \ge 1$. •						
(10 points) C	heck the (single)	box that bes	t cha	racteri	zes ea	ch iten	1.					
Suppose $f(n)$ Is $g(n) \ll f(n)$		no		p	erhaps	S	,	yes				
V is the verte with n edges.	ex set of a tree $ \mathbb{P}(V) =$	$ \begin{array}{c c} 2^{n-1} \\ 2^{n+1} \\ \end{array} $	<u>]</u> /	2^n n		no	t dete	$\operatorname{rmin}_{f e}$	ed [
_	ime of Karatsuba defined by $T(1)$	9		$\Gamma(n/2)$				$\Gamma(n/2)$ $4T(n/2)$		_	$\sqrt{}$	
The number of full complete	of nodes in a binary tree of he	ight h	_	2^h $2^{h+1} -$	-1			$n-1$ $n+1$ _	1	√		
If $f: \mathbb{R} \to \mathbb{P}(2)$ then $f(17)$ is	,	an integ	F			of int				unde	efined	l