Thursday

6

Name:			
NetID:	Lecture:	\mathbf{A}	В

Friday

(15 points) Professor Martinez needs a state machine that will recognize certain base-3 numbers. It should read the digits in left-to-right order. That is, if you've seen number x and read a new digit d, your new number is 3x + d. The machine should be in a final state whenever the number read so far is congruent to 3 (mod 5). For efficiency, the state machine must be deterministic. Specifically, if you look at any state s and any action s, there is **exactly** one edge labelled s leaving state s.

10

11

12

1

 $\mathbf{2}$

3

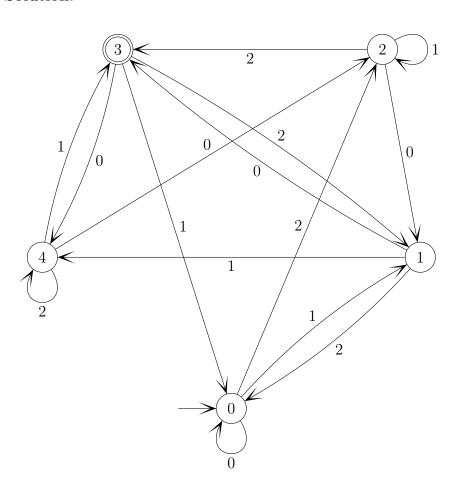
4

5

Draw a state diagram that will meet his needs, using no more than 7 states and, if you can, no more than 5.

Solution:

Discussion:



Name:											
NetID:			Lecture:			${f A}$	В				
Discussion: Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(5 points) Let's consider two to (so size and position matter). Also of distinct triangles countable or u	assume tha	t all	vertice	es have	integ	$\operatorname{er} x$ a					
Solution: This set is countable know that \mathbb{Z}^k is countable for any	_		-			•	y pair	rs, i.e	. six i	intege	ers. W
(10 points) Check the (single) l	pox that bes	t cha	ıracteri	zes eac	ch iten	n.					
$\mathbb{P}(\mathbb{Q})$ finite	COI	untal	bly infi	nite [unce	ounta	ble			
There is a bijection $f: A \to B$ if and only if $ A \le B $.	true		false		${ m tr}$	ue for	finite	e sets]	
The set of all (finite) phone lattices using the 26 letters A,, Z.	finite [cou	ıntably	infini	te	\checkmark	unc	count	able	
The set of 10-digit US phon numbers.	ne finite		co	ountab	ly infi	nite		uı	ncoun	table	
Any function from $\{0,1\}$ to \mathbb{N} has a corresponding $C++$ program that computes it.	true	$\sqrt{}$	fals	se		not k	nown				

Name:												
NetID:		_	Lecture:			A	\mathbf{B}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(5 points) $A =$	$= \{0, 1, 4, 9, 16, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25$	$5, 36, \ldots\}, i$	i.e. per	fect sq	uares s	tartin	g witl	n 0.				
$B = \{2, 4, 6, 8$	$, 10, 12, 14, \ldots \}, i.$	e. the even	n integ	ers sta	rting w	ith 2.						
Give a specific	e formula for a bi	jection f :	$A \to B$	3. (You	ı do no	t need	l to p	rove tl	hat i	t is a	bijed	tion.
Solution: f	$(n) = 2(\sqrt{n} + 1)$											
(10 points) Ch	neck the (single)	box that be	est cha	racteri	zes eac	h item	1.					
$\neg(p \to q) \equiv \neg$	$p \to \neg q$	tr	rue		false	e	<i>,</i>					
$\emptyset imes \emptyset =$	Ø	/ {	Ø}		$\{\emptyset,\emptyset$	}		{(($[\emptyset,\emptyset)\}$	-		
$29 \equiv 2 \pmod{9}$	9) true	$\sqrt{}$	false									
	s onto, then each s exactly one pre-		e tru	e		false						
Chromatic nu	mber of W_n .	2		3		≤ 3		\leq	4	$\sqrt{}$		

Name:												
NetID:			_	Le	ecture	:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(5 points) Supequation $w + x +$	ppose that $w, x, y + z = 120$? Br	-			_	. How	man	y solu	itions	are 1	there	for the
Solution: Since $w' = w - 0$ combinations with of solutions is		y' = y - 1, x	and z'	'=z	– 1. V	Ve can	then	viev	v this	s as a	prob	olem of
		$\binom{1}{2}$	19 =	$= \begin{pmatrix} 119 \\ 116 \end{pmatrix}$	$\binom{9}{5}$							
(10 points) Ch	neck the (single)	box that bes	st chai	racteri	zes eac	h item	۱.					
Suppose $f(n)$ Will $g(n)$ be Θ	V- V /	no		рe	erhaps		У	res	$\sqrt{}$			
All ways to as True/False val n input variab	lues to	$\log n$) \square	$\Theta(n)$ $\Theta(n^{\mathrm{lo}}$			$\Theta(n \log_2 n)$	- /		$\Theta(n)$ $\Theta(2)$			
T(1) = d $T(n) = 2T(n/n)$	$\Theta(n)$ $(2) + n \qquad \Theta(n^{lo})$	g ₃ ²)	$\Theta(n \log \Theta(n^{\log n}))$			$\Theta(n^2)$ $\Theta(2^n)$		ī	(n^3) (3^n)			
The root node internal node	of a tree is an	always		s	ometim	ies	$\sqrt{}$	ne	ver			
$\binom{n}{0}$	-1 0	1		2	2	n	ı		und	efined	l [