Name:					
NetID:		Lecture:		\mathbf{A}	
Discussion:	Monday & Wednesday	1:30	2:30		

(15 points) Recall that a real number p is rational if there are integers m and n (n non-zero) such that $p = \frac{m}{n}$. Use this definition and your best mathematical style to prove the following claim:

For all real numbers x and y, $x \neq 0$, if x and $\frac{y+1}{2}$ are rational, then $\frac{5}{x} + y$ is rational.

Name:

NetID:_____ Lecture: A

Discussion: Monday & Wednesday 1:30 2:30

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

For any positive integers s, t, p, q, if $s \equiv t \pmod{p}$ and $p \mid q$, then $s \equiv t \pmod{q}$.

2. (6 points) Use the Euclidean algorithm to compute $\gcd(2262, 546)$. Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

$$\gcd(p,q) = \frac{pq}{\operatorname{lcm}(p,q)}$$
(p and q positive integers) always some

sometimes never

 $7 \mid -7$ true false