Name:____

NetID:_____

Lecture: A

Discussion: Monday & Wednesday 1:30 2:30

$$A = \{(x, y) \in \mathbb{Z}^2 \mid y = x^2 + 5x + 9\}$$

$$B = \{(a, b) \in \mathbb{Z}^2 \mid a \le 2\}$$

$$C = \{ (p, q) \in \mathbb{Z}^2 \mid q > 20 \}$$

Prove that $A \subseteq B \cup C$.

Solution: Let $(x,y) \in A$. By the definition of A, (x,y) is a pair of integers such that $y = x^2 + 5x + 9$. There are two cases:

Case 1: $x \leq 2$. Then $(x, y) \in B$, so $(x, y) \in B \cup C$.

Case 2: x > 2. The $y = x^2 + 5x + 9 > 4 + 10 + 9 = 21 > 20$. So $(x, y) \in C$, and therefore $(x, y) \in B \cup C$.

In both cases $(x, y) \in B \cup C$.

So any element of A is also an element of $B \cup C$, which means that $A \subseteq B \cup C$.

Name:

NetID:_____

Lecture: A

Discussion: Monday & Wednesday 1:30 2:30

1. (4 points) $A = \{\text{apple}, \text{maple}, \text{elm}, \emptyset\}$ $B = \{\text{tree}, \text{oak}, \emptyset\}$

$$A \cap B =$$

Solution: $\{\emptyset\}$

 $\{(p,q) : p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } pq = 6\} =$

Solution: $\{(p,q): p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } pq = 6\} = \{(1,6), (6,1), (2,3), (3,2)(-1,-6), (-6,-1), (-2,-3), (-3,-2)\}$

2. (4 points) Check the (single) box that best characterizes each item.

 $A \cap B \subseteq A$

true for all sets A and B false for all sets A and B

true for some sets A and B

 $\forall x \in \mathbb{N}$, if $x^2 < -3$, then x > 1000.

true

false

undefined

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{18} + [7]^4$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as [n], where $0 \le n \le 12$.

Solution:

$$[7]^2 = [49] = [10] = [-3]$$

$$[7]^4 = [-3]^2 = [9]$$

$$[7]^6 = ([7]^2)^3 = [-3]^3 = [-27] = [-1]$$

$$[7]^{18} = ([7]^6)^3 = [-1]^3 = [-1] = [12]$$

So
$$[7]^{18} + [7]^4 = [12] + [9] = [21] = [8]$$