Name:_____

NetID:

Lecture: \mathbf{A}

Discussion: Monday & Wednesday 1:30 2:30

$$A = \{(x, y) \in \mathbb{Z}^2 \mid y = x^2 + 5x + 9\}$$

$$B = \{(a, b) \in \mathbb{Z}^2 \mid a \le 2\}$$

$$C = \{ (p,q) \in \mathbb{Z}^2 \mid q > 20 \}$$

Prove that $A \subseteq B \cup C$.

Name:			

NetID:_____

Lecture: A

Discussion: Monday & Wednesday 1:30 2:30

1. (4 points)
$$A = \{\text{apple}, \text{maple}, \text{elm}, \emptyset\}$$
 $B = \{\text{tree}, \text{oak}, \emptyset\}$ $A \cap B =$

$$\{(p,q) : p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } pq = 6\} =$$

2. (4 points) Check the (single) box that best characterizes each item.

 $A\cap B\subseteq A$

true for all sets A and B false for all sets A and B

true for some sets A and B

 $\forall x \in \mathbb{N}$, if $x^2 < -3$, then x > 1000.

U.

true

false

undefined

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{18} + [7]^4$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.