| Name: | | | | |-------|--|--|--| | | | | | NetID:_____ Lecture: A Discussion: Monday & Wednesday 1:30 2:30 Recall how to multiply a real number α by a 2D point $(x,y) \in \mathbb{R}^2$: $\alpha(x,y) = (\alpha x, \alpha y)$. Let $A = \mathbb{R}^+ \times \mathbb{R}^+$, i.e. pairs of positive real numbers. Define a relation \gg on A as follows: $(x,y)\gg(p,q)$ if and only if there exists a real number $\alpha\geq 1$ such that $(x,y)=\alpha(p,q)$. Prove that \gg is antisymmetric. **Solution:** Let (x,y) and (p,q) be elements of A. Suppose that $(x,y) \gg (p,q)$ and $(p,q) \gg (x,y)$. By the definition of \gg , there are real numbers $\alpha \geq 1$ and $\beta \geq 1$ such that $(x,y) = \alpha(p,q)$ and $(p,q) = \beta(x,y)$. Substituting the second equation into the first, we get $(x,y) = \alpha\beta(x,y)$. This means that $\alpha\beta = 1$. Since $\alpha \ge 1$ and $\beta \ge 1$, this implies that $\alpha = \beta = 1$. So therefore (x,y) = (p,q), which is what we needed to show. | Name: | | | | |-------|--|--|--| | | | | | NetID:_____ Lecture: A Discussion: Monday & Wednesday 1:30 2:30 1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$. 2. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(a,b) \sim (p,q)$ if and only aq = bp. List three members of [(5,6)]. **Solution:** (5,6), (10,12), (-5, -6) 3. (5 points) Let T be the relation on \mathbb{R}^2 such that (x,y)T(p,q) if and only if $(x,y)=\alpha(p,q)$ for some real number α . Is T symmetric? Informally explain why it is, or give a concrete counter-example showing that it is not. **Solution:** T is not symmetric. We have (0,0)T(p,q) by setting α to zero but not (3,4)T(0,0).