Name:

NetID:_____ Lecture: A

Discussion: Monday & Wednesday 1:30 2:30

Recall how to multiply a real number α by a 2D point $(x,y) \in \mathbb{R}^2$: $\alpha(x,y) = (\alpha x, \alpha y)$.

Let $A = \mathbb{R}^+ \times \mathbb{R}^+$, i.e. pairs of positive real numbers.

Define a relation \gg on A as follows:

 $(x,y)\gg(p,q)$ if and only if there exists a real number $\alpha\geq 1$ such that $(x,y)=\alpha(p,q)$.

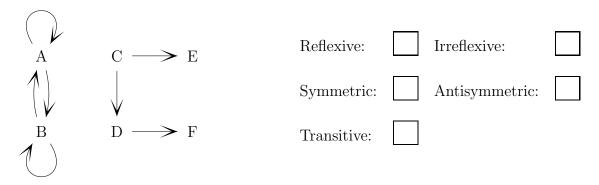
Prove that \gg is antisymmetric.

Name:_____

NetID:_____ Lecture: A

Discussion: Monday & Wednesday 1:30 2:30

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(a,b) \sim (p,q)$ if and only aq = bp. List three members of [(5,6)].

3. (5 points) Let T be the relation on \mathbb{R}^2 such that (x,y)T(p,q) if and only if $(x,y)=\alpha(p,q)$ for some real number α . Is T symmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.