${f Name:}_{-}$			

Discussion: Monday & Wednesday 1:30 2:30

1. (10 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is one-to-one. Let's define $g: \mathbb{Z} \to \mathbb{Z}^2$ by g(n) = (|n|, f(n)|n|). Prove that g is one-to-one.

Lecture:

 \mathbf{A}

Solution:

NetID:

Let p and q be integers. Suppose that g(p) = g(q).

By the definition of g, this means that (|p|, f(p)|p|) = (|q|, f(q)|q|). So |p| = |q| and f(p)|p| = f(q)|q|.

Case 1: |p| = 0. Then p = q = 0. So p = q.

Case 2: |p| is non-zero. Substituting the first equation into the second, we get that f(p)|p| = f(q)|p|. So f(p) = f(q). Since f is one-to-one, this means that p = q.

So we've shown that g(p) = g(q) implies that p = q, which means that g is one-to-one.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

Solution: For every element y in C, there is an element x in M such that g(x) = y.

Name:						
NetID:	Lecture:		${f A}$			
Discussion:	Monday & Wednesday	1:30	2:30			
\ - /	How many different 13-letter strings ne word ''massachusetts''? Show	_	_	na can be ma	de be rearran	ging the
	Notice that the first two letters a es of s, and two t's. So the number			are 11 lette	rs total to re	arrange
		$\frac{11!}{4!2!}$				
2. (10 points)	Check the (single) box that best ch	aracteriz	es each it	tem.		
-	sition of two one-to-one one-to-one. true	√ fa	alse			
$f: \mathbb{N}^2 \to \mathbb{N}$ $f(p,q) = pq$	onto I /I no	t onto		not a function	on	
$g: \mathbb{R} \to \mathbb{Z}$ $g(x) = x $	one-to-one	not one	e-to-one	no	t a function	$\sqrt{}$
stamina. If	as exactly one gift: charm, streng there are 10 elves, there must be a with the same gift.		true	√ fa	alse	
$\forall p \in \mathbb{Z}^+, \ \exists$	$t \in \mathbb{Z}^+, \ \gcd(p, t) = 1$ true	√ f	alse			