\mathbf{A}

Name:____

NetID:______ Lecture:

Discussion: Monday & Wednesday 1:30 2:30

(20 points) Recall that F_n is the nth Fibonacci number, and these start with $F_0 = 0$, $F_1 = 1$. Use (strong) induction to prove the following claim:

Claim: $F_n < (5/3)^n$ for any natural number n.

Solution:

Proof by induction on n.

Base Case(s): At n = 0, $F_n = 0$ and $(5/3)^n = 1$, so $F_n < (5/3)^n$.

At
$$n = 1$$
, $F_n = 1$ and $(5/3)^n = 5/3$, so $F_n < (5/3)^n$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $F_n < (5/3)^n$, for n = 0, 1, ..., k.

Inductive Step: By the inductive hypothesis, $F_k < (5/3)^k$ and $F_{k-1} < (5/3)^{k-1}$. So

$$F_{k+1} = F_k + F_{k-1}$$

$$< (5/3)^k + (5/3)^{k-1}$$

$$= (5/3+1)(5/3)^{k-1} = (8/3)(5/3)^{k-1} = (24/9)(5/3)^{k-1}$$

$$< (25/9)(5/3)^{k-1} = (5/3)^{k+1}$$

So $F_{k+1} < (5/3)^{k+1}$, which is what we needed to prove.

Name:

NetID:_____ Lecture: A

Discussion: Monday & Wednesday 1:30 2:30

(10 points) Suppose we have a function F defined (for n a power of 2) by

$$F(2) = c$$

$$F(n) = F(n/2) + n \text{ for } n > 4$$

Your partner has already figured out that

$$F(n) = F(n/2^k) + \sum_{i=0}^{k-1} n \frac{1}{2^i}$$

Finish finding the closed form for F. Show your work and simplify your answer.

Solution:

To find the value of k at the base case, we need to set $n/2^k = 2$. This means that $n = 2 \cdot 2^k$. So $n = 2^{k+1}$. So $k + 1 = \log n$. So $k = \log n - 1$. Substituting this value into the above equation, we get

$$F(n) = T(n/2^k) + \sum_{i=0}^{k-1} n \frac{1}{2^i} = F(2) + \sum_{i=0}^{\log n - 2} n \frac{1}{2^i}$$

$$= c + n \sum_{i=0}^{\log n - 2} \frac{1}{2^i} = c + n(2 - \frac{1}{2^{\log n - 2}})$$

$$= c + n(2 - \frac{1}{2^{\log n} \cdot 2^{-2}}) = c + n(2 - \frac{4}{2^{\log n}})$$

$$= c + n(2 - \frac{4}{n}) = c + 2n - 4$$