\mathbf{A}

Name:

NetID:______ Lecture:

Discussion: Monday & Wednesday 1:30 2:30

(15 points) Use (strong) induction to prove the following claim:

Claim: $\frac{(2n)!}{n!n!} < 4^n$, for all integers $n \ge 2$

Solution:

Proof by induction on n.

Base Case(s): At n=2, $\frac{(2n)!}{n!n!}=\frac{4!}{2!2!}=\frac{24}{4}=6<16=4^n$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\frac{(2n)!}{n!n!} < 4^n$, for $n = 2, \ldots, k$.

Inductive Step: By the inductive hypothesis, $\frac{(2k)!}{k!k!} > 4^k$.

Then we can compute

$$\frac{(2(k+1))!}{(k+1)!(k+1)!} = \frac{(2k+2)(2k+1)(2k)!}{(k+1)k!(k+1)k!} = \frac{(2k+2)(2k+1)}{(k+1)^2} \frac{(2k)!}{k!k!}$$

$$< \frac{(2k+2)(2k+1)}{(k+1)^2} 4^k$$

$$< \frac{(2k+2)(2k+2)}{(k+1)^2} 4^k = \frac{4(k+1)(k+1)}{(k+1)^2} 4^k$$

$$= 4 \cdot 4^k = 4^{k+1}$$

So $\frac{(2(k+1))!}{(k+1)!(k+1)!} < 4^{k+1}$, which is what we needed to show.

T(1) = d

T(1) = d

 $n^{1.5}$ is

T(n) = 2T(n-1) + c

T(n) = T(n-1) + n

Suppose f(n) is $\Theta(g(n))$.

Will g(n) be O(f(n))?

Name:			
${ m NetID:}$		Lecture:	\mathbf{A}
Discussion: M	Ionday & Wednesday	1:30 2:30	
increasing funct	_	ls, for which all	board. Suppose that f and g are output values are > 1 . If $f(x)$ is stify your answer.
Solution:			
$f(x) \le cg(x)$ for an increasing fu	or all $x \geq k$. Then $\log(f(x))$	$0 \le \log c + \log(g)$ ome $K \ge k$ such	e positive reals c and k such that $c(x)$ for all $x \geq k$. Since $g(x)$ is a that $\log c \leq \log(g(x))$. So then $c(x)$.
-	this much technical detail for big-O because the two functio		an ignore the other inequality from positive values.]
2. (8 points) Checl	the (single) box that best cha	aractorizes each it	rem

 $\Theta(\sqrt{n})$

 $\Theta(n^3)$

 $\Theta(\sqrt{n})$

 $\Theta(n^3)$

 $O(n^{1.414})$

 $\Theta(n)$

 $\Theta(2^n)$

 $\Theta(n)$

 $\Theta(2^n)$

sometimes

 $\Theta(n \log n)$

 $\Theta(n \log n)$

 $\Theta(3^n)$

 $\Theta(3^n)$

yes

neither of these

 $\Theta(\log n)$

 $\Theta(\log n)$

 $\Theta(n^2)$

 $\Theta(n^{1.414})$

 $\Theta(n^2)$