Lecture:

Name:

NetID:\_\_\_\_\_

 $\mathbf{A}$ 

Discussion: Monday & Wednesday 1:30 2:30

(15 points) Use (strong) induction to prove the following claim:

Claim:  $\frac{(2n)!}{n!n!} < 4^n$ , for all integers  $n \ge 2$ 

Proof by induction on n.

Base case(s):

**Inductive Hypothesis** [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

Name:\_\_\_\_

NetID:\_\_\_\_\_\_ Lecture:

Discussion: Monday & Wednesday 1:30 2:30

1. (7 points) You found the following claim on a hallway whiteboard. Suppose that f and g are increasing functions from the reals to the reals, for which all output values are > 1. If f(x) is O(g(x)), then  $\log(f(x))$  is  $O(\log(g(x)))$ . Is this true? Briefly justify your answer.

2. (8 points) Check the (single) box that best characterizes each item.

$$T(1) = d$$
  

$$T(n) = 2T(n-1) + c$$

$$\Theta(\log n)$$
  
 $\Theta(n^2)$ 

| $\Theta(\sqrt{n})$ |
|--------------------|
| $\Theta(n^3)$      |



| $\Theta(n \log n)$ |  |
|--------------------|--|
| $\Theta(3^n)$      |  |

 $\mathbf{A}$ 

$$T(1) = d$$
  

$$T(n) = T(n-1) + n$$

$$\Theta(\log n)$$
  
 $\Theta(n^2)$ 





| $\Theta(n \log n)$ |  |
|--------------------|--|
| $\Theta(3^n)$      |  |

$$n^{1.5}$$
 is

$$\Theta(n^{1.414})$$

$$O(n^{1.414})$$

neither of these

Suppose f(n) is  $\Theta(g(n))$ . Will g(n) be O(f(n))?

no

sometimes

yes