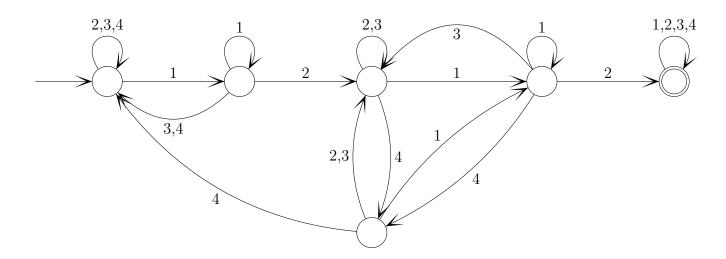
NetID:_____ Lecture: A

Discussion: Monday & Wednesday 1:30 2:30

(15 points) Q needs your help designing an exploding keychain. The keychain has four buttons, labelled 1, 2, 3, and 4. To make it explode, James Bond must input 12 twice. The two copies of 12 could be together (1212) or separated by other digits (1234312). Your state machine should move into an end state when that happens and remain in that final state as further digits come in. Exception: if you aren't already in the end state, two consecutive 4's (44) should abort the command (i.e. put the controller back in the start state). For efficiency, the state machine must be deterministic. Specifically, if you look at any state s and any action a, there is **exactly** one edge labelled a leaving state s.

Draw a deterministic state diagram that will meet his needs, using no more than 9 states and, if you can, no more than 6.

Solution:



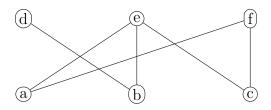
Name:					_	
NetID:			Lecture:		\mathbf{A}	
Discussion:	Monday & V	Vednesday	1:30	2:30		
(- /	"red/black tree" is d/black trees coun	,				ither "red" or "black." wer.
nodes. A tree wit trees of each size.	h n nodes can be contained Then the whole see	colored in 2^n way et is the union of	s. So ther f countabl	e can only y many f	ly be a finit finite sets,	nct binary trees with note number of red/black which is countable.
(10 points) Ch	neck the (single) bo	x that best char	racterizes	each iten	1.	
$\mathbb{P}(\mathbb{R})$ has the s as \mathbb{R} .	ame cardinality	true	false	v n	ot known	
A product of is countable.		rue fa	lse	true f	for finite pr	oducts $\sqrt{}$
The set of pia finite sequence on the standarkeyboard.	es of notes found	finite	countal	oly infini	te 🗸	uncountable
•	from $\{1, 2, 3\}$ to finite formula.	true	false	$\sqrt{}$	not known	
	ords (simultaneous of notes) playable piano.	finite $\sqrt{}$	count	ably infi	nite	uncountable

Name:_____

NetID:______ Lecture:

Discussion: Monday & Wednesday 1:30 2:30

(5 points) Is this graph bipartite? Briefly justify your answer.



Solution: Yes, this is bipartite. All the edges go between the top set of nodes and the bottom set of nodes.

(10 points) Check the (single) box that best characterizes each item.

$$p \wedge q \equiv \neg(p \to \neg q)$$

true

 $\sqrt{}$ false

If a and b are positive integers and r = remainder(a, b), then gcd(b, r) = gcd(r, a)

true

false $\sqrt{}$

 \mathbf{A}

 $\exists y \in \mathbb{N}, \ \forall x \in \mathbb{Z}, \ x^2 = y$

true

false $\sqrt{}$

$$g: \mathbb{Z} \to \mathbb{Z}$$
$$g(x) = x + 2.137$$

one-to-one

not one-to-one

not a function

$$\{1,2\} \times \emptyset =$$

 \emptyset $\sqrt{}$

 $\{(1,\emptyset),(2,\emptyset)\}$

 $\{1, 2\}$

 $\boxed{ } \qquad \{1,2,\emptyset\}$

undefined

Name:							_	
NetID:				Lect	ure:	\mathbf{A}		
Discussion:	Mond	ay & Wed	dnesday	1:30	2:30			
(5 points) Sumeans for f to be		f and g are	e functions	from the	reals to t	the reals.	Define precis	sely what
Solution: T	here are po	ositive reals	c and k suc	that $0 \le$	$f(x) \leq$	cg(x) for e	every $x \ge k$.	
(10 points) C	heck the (s	ingle) box th	nat best cha	aracterizes	each ite	n.		
Number of bilength k .	t strings o	of 2^k	$\sqrt{}$ 2^k	-1	2^{k-}	-1	k	
A tree with n edges.	nodes has	n $n/2$		$n-1$ $\left[\log n \right]$	√ 	$\leq n$		
T(1) = d $T(n) = T(n/2)$	(2) + n	$\Theta(\log n)$ $\Theta(n^2)$	$ \Theta(\sqrt{r} \\ \Theta(n^3) $		$\Theta(n)$ $\Theta(2^n)$	$ \Theta(n 1 \\ \Theta(3^n $		
$\binom{n}{1}$	-1	0	1	2 [undefined	
$\mathbb{P}(A) \cap \mathbb{P}(B)$:	= Ø	always	s 🗍	sometime	es 🗍	never		