
“CS/ECE 374 A”: Algorithms & Models of Computation, Spring 2025
Midterm 1 Solutions — Feb 24, 2025

Name:
NetID:

• Please clearly PRINT your name and your NetID in the boxes above.

• This is a closed-book but you are allowed a 1 page (2 sides) hand written cheat sheet that
you have to submit along with your exam. If you brought anything except your writing
implements, put it away for the duration of the exam. In particular, you may not use any
electronic devices.

• Please read the entire exam before writing anything. Please ask for clarification if any
question is unclear. The exam has 6 problems, each worth 10 points.

• You have 150 minutes (2.5 hours) for the exam.

• If you run out of space for an answer, continue on the back of the page, or on the blank
pages at the end of this booklet, but please tell us where to look.

• Write everything inside the box around each page. Anything written outside the box
may be cut off by the scanner.

• Proofs are required only if we specifically ask for them. You may state and use (without
proof or justification) any results proved in class or in the problem sets unless we explicitly
ask you for one.

• You can do hard things!

• Do not cheat. You know the student code and all that jazz. Grades do matter, but not as
much as you may think, and your values are more important.

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

1 Regular Expression

Assume Σ= {0,1}. Give regular expressions for the two languages below and briefly explain
how your expressions work.
(a) (5 pts) All strings which contain the substring 01010 and which have an even number of

blocks of 0’s. Recall that a block (or a run) is a non-empty maximal substring of the same
symbol.

Solution:

1∗(0+1+0+1+)∗0+1010+(1+0+)(1+0+1+0+)∗1∗ +

1∗(0+1+0+1+)∗(0+1+)0+1010+(1+0+1+0+)∗1∗

The 0+1010+ in each term ensures that our string contains the substring 01010, as
well as capturing any additional zeros in the blocks immediately before and after this
substring. Since this adds three blocks of zeros, we know that the rest of the string
has to have an odd number of blocks of zeros. The first term captures the case where
the string before 0+1010+ has an even number of blocks of zeros and the string after
0+1010+ has an odd number of these blocks, while the second term captures the
reverse of this. ■

Rubric: 5 points: standard regular expression rubric, scaled.

(b) (5 pts) {12nw0n | n≥ 2, w ∈ {0,1}∗}

Solution:
1111(0+ 1)∗00

Note that if we can write x = 12nw0n for some n≥ 2, we can in fact write x = 14w′02

by taking w′ = 12n−4w0n−2. Since all strings of the form 14w′02 are in the language
(by taking n= 2 in the definition), we have that this language is just all strings that
start with (at least) four ones and end with (at least) two zeros, which is exactly what
our regular expression captures. ■

Rubric: 5 points: standard regular expression rubric, scaled.

Rubric: Standard regular expression rubric. 10 points =

– 2 points for a syntactically correct regular expression.

– 4 points for a brief English explanation of your regular expression. This is how you argue
that your regular expression is correct.

∗ For longer expressions, you should explain each of the major components of your
expression, and separately explain how those components fit together.

∗ We do not want a transcription; don’t just translate the regular-expression notation
into English.

– 4 points for correctness.

∗ -4 for incorrectly answering ; or Σ∗.

1

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

∗ -1 for a single mistake: one typo, excluding exactly one string in the target language,
or including exactly one string not in the target language. (The incorrectly handled
string is almost always the empty string ε.)

∗ -2 for incorrectly including/excluding more than one but a finite number of strings.

∗ -4 for incorrectly including/excluding an infinite number of strings.

– Regular expressions that are more complex than necessary may be penalized. Regular
expressions that are significantly too complex may get no credit at all. On the other hand,
minimal regular expressions are not required for full credit.

2

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

2 DFA Design

Give DFAs for the two languages below and briefly describe the meaning of each state.

(a) (5 pts) Strings in {0, 1}∗ whose first character equals its second-to-last character. Examples
of strings in this language include 00101, 11111, and 10. Examples of strings not in this
language include ε, 1100, and 10101.

Solution: We give a DFA that keeps track of the first character we read as well as
the last two characters we read, and uses these to check the given condition. Using
formal tuple notation, this DFA is given by:

– Q = {ε, 0, 1} ∪ {(a, bc) | a, b, c ∈ {0,1}}
– s = ε

– A= {(a, bc) | a = b}

– δ(q, d) =











d if q = ε
(a, ad) if q = a

(a, cd) if q = (a, bc)

Meaning of the states:

– ε: We have not read any characters yet.
– 0: We have read exactly one character, and it was a 0.
– 1: We have read exactly one character, and it was a 1.
– (a, bc): We have read at least two characters, the first character was a, and the

most recent two characters have been bc.

■

Rubric: 5 points: standard DFA rubric, scaled. A drawing is also possible for this problem,
though it will be a bit unwieldy at 11 states.

(b) (5 pts) Strings in {0, 1,2}∗ that do not contain the substring 012.

Solution: We give a DFA that tracks how much of the substring 012 we’ve seen so far,
and only rejects if we ever see the whole thing at once. Formally, we can draw this as
follows:

3

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

ε 0 01 012

0

1,2

2

1

0

0

2

1

0,1, 2

Meaning of the states:

– 012: We have seen the full substring 012.
– 01: We haven’t previously seen 012, but the last two characters were 01.
– 0: We haven’t previously seen 012, but the last character we read was 0.
– ε: We haven’t previously seen 012, and the most recent characters we’ve read

don’t match with any prefix of 012.

■

Rubric: 5 points: standard DFA rubric, scaled.

Standard DFA/NFA design rubric. 10 points =

– 2 points for an unambiguous description of a DFA or NFA, including the states set Q, the
start state s, the accepting states A, and the transition function δ.

∗ Drawings:

· Use an arrow from nowhere to indicate the start state s.
· Use doubled circles to indicate accepting states A.

· If A=∅, say so explicitly.

· If your drawing omits a junk/trash/reject/hell state, say so explicitly.

· Draw neatly! If we can’t read your solution, we can’t give you credit for it.

∗ Text descriptions: You can describe the transition function either using a 2d array,
using mathematical notation, or using an algorithm.

· You must explicitly specify δ(q, a) for every state q and every symbol a.

· If you are describing an NFA with ϵ-transitions, you must explicitly specify δ(q,ϵ)
for every state q.

· If you are describing a DFA, then every value δ(q, a) must be a single state.

· If you are describing an NFA, then every value δ(q, a) must be a set of states.

· In addition, if you are describing an NFA with ϵ-transitions, then every value
δ(q,ϵ) must be a set of states.

∗ Product constructions: You must give a complete description of each of the DFAs
you are combining (as either drawings, text, or recursive products), together with the
accepting states of the product DFA. In particular, we will not assume that product
constructions compute intersections by default.

4

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

– 4 points for briefly explaining the purpose of each state in English. This is how you argue
that your DFA or NFA is correct.

∗ For product constructions, explaining the states in the factor DFAs is both necessary
and sufficient.

∗ Yes, we mean it. A perfectly correct drawing of a perfectly correct DFA with no
state explanation is worth at most 6 points.

– 4 points for correctness.

∗ −1 for a single mistake: a single misdirected transition, a single missing or extra
accepting state, rejecting exactly one string that should be accepted, or accepting
exactly one string that should be accepted. (The incorrectly accepted/rejected string
is almost always the empty string ϵ.)

∗ −4 for incorrectly accepting every string, or incorrectly rejecting every string.
∗ −2 for incorrectly accepting/rejecting more than one but a finite number of strings.
∗ −4 for incorrectly accepting/rejecting an infinite number of strings.

– DFAs or NFAs that are more complex than necessary may be penalized. DFAs or NFAs
that are significantly more complex than necessary may get no credit at all. On the other
hand, minimal DFAs are not required for full credit, unless the problem explicitly asks for
them.

– Half credit for describing an NFA when the problem asks for a DFA.

5

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

3 NFA Design

(10 pts) Let k ≥ 1 be an integer and let

Lk = {w ∈ {0, 1}∗ : |w| ≥ k and number of 0s and 1s differ by at most two in the last k bits of w}

For example if k = 5 then the strings 0000011 and 11010 are in L5 while 11110 and 100000
are not in L5. Describe an NFA for Lk with O(k2) states and briefly describe the meaning of
each state.

Solution: We define an NFA N = (Q,δ, s, A) as follows, with all unspecified transitions
going to ;:

• Q = {s} ∪ {−k, . . . , 0, . . . , k} × {1, . . . , k}

• δ(q, a) =



















{s, (1, 1)} if q = s, a = 0

{s, (−1,1)} if q = s, a = 1

{(i + 1, j + 1)} if q = (i, j), a = 0, (i + 1, j + 1) ∈Q

{(i − 1, j + 1)} if q = (i, j), a = 1, (i − 1, j + 1) ∈Q

• s = s

• A= {(q, r) | q ∈ {−2,−1, 0,1,−2}, r = k}

Our NFA guesses when the last k bits begins, and checks to make sure that the number of
zeros and ones differ by at most two in those last k bits. The meaning of each state is as
follows:

• s: We have guessed that we haven’t yet started the last k bits.

• (i, j)We guessed that the last k bits started j bits ago, and since then the number of
zeros we’ve seen minus the number of ones is j.

This construction uses 1 + (2k + 1) · k = O(k2) states. (This is not the only correct
construction.) ■

Standard DFA/NFA design rubric. 10 points =

• 2 points for an unambiguous description of a DFA or NFA, including the states set Q, the start
state s, the accepting states A, and the transition function δ.

– Drawings:

∗ Use an arrow from nowhere to indicate the start state s.
∗ Use doubled circles to indicate accepting states A.

∗ If A=∅, say so explicitly.

∗ If your drawing omits a junk/trash/reject/hell state, say so explicitly.

∗ Draw neatly! If we can’t read your solution, we can’t give you credit for it.

– Text descriptions: You can describe the transition function either using a 2d array,
using mathematical notation, or using an algorithm.

∗ You must explicitly specify δ(q, a) for every state q and every symbol a.

6

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

∗ If you are describing an NFA with ϵ-transitions, you must explicitly specify δ(q,ϵ) for
every state q.

∗ If you are describing a DFA, then every value δ(q, a) must be a single state.

∗ If you are describing an NFA, then every value δ(q, a) must be a set of states.

∗ In addition, if you are describing an NFA with ϵ-transitions, then every value δ(q,ϵ)
must be a set of states.

– Product constructions: You must give a complete description of each of the DFAs
you are combining (as either drawings, text, or recursive products), together with the
accepting states of the product DFA. In particular, we will not assume that product
constructions compute intersections by default.

• 4 points for briefly explaining the purpose of each state in English. This is how you argue that
your DFA or NFA is correct.

– For product constructions, explaining the states in the factor DFAs is both necessary and
sufficient.

– Yes, we mean it. A perfectly correct drawing of a perfectly correct DFA with no state
explanation is worth at most 6 points.

• 4 points for correctness.

– −1 for a single mistake: a single misdirected transition, a single missing or extra accepting
state, rejecting exactly one string that should be accepted, or accepting exactly one
string that should be accepted. (The incorrectly accepted/rejected string is almost always
the empty string ϵ.)

– −4 for incorrectly accepting every string, or incorrectly rejecting every string.

– −2 for incorrectly accepting/rejecting more than one but a finite number of strings.

– −4 for incorrectly accepting/rejecting an infinite number of strings.

• DFAs or NFAs that are more complex than necessary may be penalized. DFAs or NFAs that
are significantly more complex than necessary may get no credit at all. On the other hand,
minimal DFAs are not required for full credit, unless the problem explicitly asks for them.

• Half credit for describing an NFA when the problem asks for a DFA.

7

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

4 Context-Free Grammars

Give a context-free grammar for the two languages below, where the terminal set T is {0, 1}. In
order to get full credit you need to briefly explain how your grammar works, and the role of
each non-terminal.

(a) (5pts) L = {0i10 j10k | i + k ≥ 3 j}

Solution: We give our grammar as follows:

S→ S1 | 0S | S0 {0i10 j10k | i + k = j}

S1→ AB | 0A0B00 | 00A0B0 {0i10 j10k | i + k = j}

A→ 000A0 | 1 {03a10a | a ≥ 0}

B→ 0B000 | 1 {0b103b | b ≥ 0}

To build this grammar, we start with a non-terminal S1 to build all strings of the given
form where i + k is exactly equal to 3 j. Since i + k must be zero mod 3, we have
three cases to consider for the values of i and k mod 3: both are zero, i is 1 while k is
2, and i is 2 while k is 1. These are covered, respectively, by the three cases in the
production rules for S1. Finally, to create strings where i + k can be equal or greater
than 3 j, we can simply take any string built by S1 and add any number of zeros to its
beginning and end, which is what the production rules for S do. ■

Rubric: 5 points: standard CFG rubric, scaled.

(b) (5 pts) All strings that have an odd number of 0’s and end in 01.

Solution: Note that this is in fact a regular language. Since we want an even number
of zeros before the final two characters, one can write a regular expression for this
language as (1∗01∗0)∗1∗01. We write the following grammar to reflect this regular
expression.

S→ A01 (1∗01∗0)∗1∗01

A→ B0B0A | B (1∗01∗0)∗1∗

B→ 1B | ϵ 1∗

The production rules for B ensure that it can build strings made up of any number of
ones. Similarly, the production rules for A ensure that it can build strings made up of
any number of copies of strings of the form B0B0 with an additional B at the very end.
Since B builds strings of the form 1∗, the previous sentence means that that A builds
strings of the form (1∗01∗0)∗1∗. Finally, S adds on the 01 we need at the end. ■

8

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

Solution: We give the following grammar:

S→ E01 {w | #(0, w) is odd and w ends in 01

E→ 1E | 0D | ε {w | #(0, w) is even}
D→ 1D | 0E {w | #(0, w) is odd}

This grammar works by first defining two non-terminals E and D to capture strings
with Even and odD numbers of zeros. These production rules work by considering
cases for how many zeros the remainder of the string will have depending on if the
first character is a 1 or a 0 (or as a base case in the even case, if the string is empty).
Once we’ve built these, we know that in order for a string to end in 01 and have an
odd number of zeros, it has to be of the form w01 where w is a string with an even
number of zeros. ■

Rubric: 5 points: standard CFG rubric, scaled.

Rubric: Standard context-free grammar rubric 10 points =

– 6 points for the CFG:

+ 2 for giving a syntactically correct CFG

+ 4 if the CFG generates the target language

– 4 points for explaining why the CFG is correct.

∗ Must briefly describe the role of each non-terminal, including what language it
generates.

∗ We explicitly do not want a formal proof of correctness, just a few sentences of
explanation.

9

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

5 Fooling Sets and Non-Regularity

(10 pts) Prove that the language

L = {w ∈ {0, 1}∗ | w is a palindrome and w has at least three 0s}

is not regular by providing a fooling set for it and showing that every pair of strings in your
fooling set can be distinguished.

Solution: We consider the infinite set F = {03+i | i ≥ 0}. We claim that it is a fooling set
for L. Let x , y be two distinct strings in F , where we can write x = 03+i and y = 03+ j for
some i ̸= j. We consider the distinguishing suffix z = 103+i .

• Since xz = 03+i103+i is a palindrome and has at least three zeros, xz ∈ L.

• Note that yz = 03+ j103+i is not a palindrome since i ̸= j and hence yz ̸∈ L.

Since x , y were chosen arbitrarily, every pair of distinct strings in F are distinguishable with
respect to L. F is infinite, so this means that L is not regular. ■

Rubric: Standard fooling set rubric 10 points =

• 4 points for the fooling set:

+ 2 for explicitly describing the proposed fooling set F .

+ 2 if the proposed set F is actually a fooling set for the target language.

− No credit for the proof if the proposed set is not a fooling set.

− No credit for the problem if the proposed set is finite (unless you give a fooling set of size
at least n for every possible n ∈ N).

• 6 points for the proof:

◦ The proof must correctly consider arbitrary pairs of distinct strings x , y ∈ F .

− No credit for the proof unless both x and y are always in F .

− No credit for the proof unless x and y can be any pair of distinct strings in F .

+ 2 for explicitly describing a suffix z that distinguishes x and y .

+ 2 for proving either xz ∈ L or yz ∈ L.

+ 2 for proving either yz ̸∈ L or xz ̸∈ L.

10

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

6 Language Transformation

(10 pts) Let Σ = {0,1}. For a language L ⊆ Σ∗ we define an operation deletepropermid as
follows:

deletepropermid(L) = {uw | uvw ∈ L and u, v, w ∈ Σ∗, |v| ≥ 2}.

Prove that if L is regular then deletepropermid(L) is also regular.

Solution: Let M = (Q,Σ,δ, s, A) be a DFA accepting L. We will construct a NFA N =
(QN ,Σ,δN , sN , AN) that accepts deletepropermid(L) which will prove its regularity. The
machine N is constructed intuitively by guessing where to insert v into its input, as well as
guessing what state M would go to after reading v (conditioned on |v| ≥ 2). Formally, we
define N as follows:

• QN =Q× {before,after}

• sN = (s,before)

• AN = A× {after}.

• δN ((q,before),ε) = {(q′,after) | there is string v, |v| ≥ 2, δ∗(q, v) = q′}
δN ((q,before), a) = {(δ(q, a),before)}
δN ((q,after),ε) = ;
δN ((q,after), a) = {(δ(q, a),after)}

(We note that the definition of δN ((q,before),ε) can be a bit tricky to come up with. One
could also make a definition that uses ε transitions to guess one character of v at a time; this
would require adding a counter to the state to make sure we add at least 2 characters for v.)

■

Standard language transformation rubric (automata). For problems worth 10 points:

+ 2 for a formal, complete, and unambiguous description of the output automaton M ′, including
the states, the start state(s), the accepting states, and the transition function, as functions of
an arbitrary given DFA M . The description must state whether the output automaton is a DFA
or an NFA.

+ 2 for a brief English explanation of the output automaton. We explicitly do not want a formal
proof of correctness, or an English transcription, but a few sentences explaining how your
machine works and justifying its correctness. What is the overall idea? What do the states
represent? What is the transition function doing? Why these accepting states?

+ 6 for correctness

+ 1 for correct states — Almost always a product of the states Q of the given DFA with other
side information; does the side information make sense? Could you build a transformation
using only this side information?

+ 1 for correct start state(s)

+ 1 for correct accepting states

+ 3 for correct transition function

− 1 for a single minor mistake

11

“CS/ECE 374 A” Midterm 1 Solutions Spring 2025

• Double-check correctness when the input language is ;, or {ε}, or 1∗, or Σ∗.

• Partial credit should be awarded relative to the most similar correct solution. For example,
if a given incorrect solution can be fixed either by changing the accepting states or by
changing the transition function, it should get partial credit for a good transition function.

Standard language transformation rubric (regular expressions). For problems worth 10 points:

+ 2 for a formal, complete, and unambiguous description of the output regular expression r ′,
as a function of an arbitrary given regular expression r. This description can be recursive, in
which case it needs to specify what to do in each base case and each inductive case.

+ 2 for a brief English explanation of the output expression. We explicitly do not want a formal
proof of correctness, or an English transcription, but a few sentences explaining how your
expression works and justifying its correctness. What is the overall idea? Why these particular
modifications? If your construction is recursive, you should briefly justify each base case and
each recursive case.

+ 6 for correctness

• For recursive constructions: 1 point per case (;, ε, character, r1 + r2, r1r2, (r1)∗). Half
credit on a case if it contains a single minor mistake.

• For direct constructions:

+ 3 points for accepting all strings in the target language.

• No credit if this is only because the expression always accepts every string.

• Half credit if this is true up to a minor mistake.

+ 3 points for accepting only strings in the target language.

• No credit if this is only because the expression always rejects every string.

• Half credit if this is true up to a minor mistake.

• Double-check correctness when the input language is ;, or {ε}, or 1∗, or Σ∗.

• Partial credit should be awarded relative to the most similar correct solution.

12

	Regular Expression
	DFA Design
	NFA Design
	Context-Free Grammars
	Fooling Sets and Non-Regularity
	Language Transformation

