
“CS/ECE 374 A”: Algorithms & Models of Computation, Spring 2025
Midterm 2 Solution — April 14, 2025

Name:
NetID:

• Please clearly PRINT your name and your NetID in the boxes above.

• This is a closed-book but you are allowed a 1 page (2 sides) hand written cheat sheet that
you have to submit along with your exam. If you brought anything except your writing
implements, put it away for the duration of the exam. In particular, you may not use any
electronic devices.

• Please read the entire exam before writing anything. Please ask for clarification if any
question is unclear. The exam has 6 problems, each worth 10 points.

• You have 150 minutes (2.5 hours) for the exam.

• If you run out of space for an answer, continue on the back of the page, or on the blank
pages at the end of this booklet, but please tell us where to look.

• Write everything inside the box around each page. Anything written outside the box
may be cut off by the scanner.

• Proofs are required only if we specifically ask for them. You may state and use (without
proof or justification) any results proved in class or in the problem sets unless we explicitly
ask you for one.

• You can do hard things!

• Do not cheat. You know the student code and all that jazz. Grades do matter, but not as
much as you may think, and your values are more important.

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

1 Sums and Recurrences

(a) Consider the recurrence

T (n) = n1/4T
�

n1/4
�

+ n n≥ 16, T (n) = 1 1≤ n< 16

Give asymptotically tight bounds for the following, assuming the root of the tree is level
one. No work is required; write your final answer in the box.

– (1 pt) Number of children at the second level:

Solution: n1/4 ■

– (1 pt) Work at the second level:

Solution:
p

n ■

– (1 pt) Depth of the recurrence:

Solution: Θ(log log n) ■

– (1 pt) Value of the recurrence:

Solution: Θ(n) ■

(b) Consider the recurrences below and give asymptotically tight bounds for each T (n). No
work is required; write your final answer in the box.

– (2 pts) T (n) = 4T (n/2) + n for n≥ 2 and T (1) = 1

Solution: Θ(n2) ■

– (2 pts) T (n) = 4T (n/2) + n2 for n≥ 2 and T (1) = 1

Solution: Θ(n2 log n) ■

– (2 pts) T (n) = 4T (n/2) + n3 for n≥ 2 and T (1) = 1

Solution: Θ(n3) ■

Rubric: The first two parts of (a) get 80% credit for answers consistent with treating
the root as level 0 instead of level 1 (n5/16 and n3/8, respectively). All other parts are
all-or-nothing.

1

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

2 Recursion/Divide and Conquer/Sorting/Selection

A is an array of n1 numbers that is sorted in ascending order. B is an array of n2 numbers sorted
in descending order. You wished to create a sorted array by merging them but by mistake you
concatenated A with B to create an array C with n= n1+ n2 numbers (assume for simplicity that
all the numbers are distinct). You do not have the original arrays anymore nor do you know n1
and n2. For example if A= [1,2, 6,7] and B = [8, 4,3] then C = [1,2, 6,7, 8,4, 3]. Describe an
algorithm, as fast as possible, that given C , its size n, and a number x checks whether x is in C
or not.

Solution: We can obtain an O(log n)-time algorithm via the following two step process.
First, we find the “peak” of the array C , namely the largest number. More precisely we find
its index n′ in C . We observe that C[1..n′] is a sorted array with numbers ascending and
C[n′..n] is a sorted array with numbers descending.

FindElement(C[1..n], x)):
Let n′ = FindIndexofMax(C[1..n])
Use binary search on C[1..n′] to check if x is in C[1..n′]
if x found return YES
else

Use binary search on C[n′, n] (with descending values) to check if x is in C[n′..n]
return the outcome of the binary search

Now we describe a binary search like procedure to find the index of the maximum number
in C .

FindIndexofMax(C[i.. j]):
Let n= j − i + 1
If n< 10 use linear search (brute force) in O(1) time and return index
mid = i + ⌊(j − i)/2⌋
if (C[mid]< C[mid + 1]) return FindIndexofMax(C[mid + 1, j])
else if (C[mid − 1]> C[mid] return FindIndexofMax(C[i, mid − 1])
else return mid

The algorithm FindIndexofMax(C[1..n]) takes O(log n) time since it is very similar to binary
search. Thus FindElement(C[1..n], x)) also takes O(log n) time since it is two binary
searches at most after finding the index of the max. ■

Rubric: 10 points for a fully correct O(log n)-time algorithm. Partial credit:

• 7 points for clearly articulating that we need to find the split point between A and B, then
searching each half, even if some of the finer details are missing.

• 4 points for attempting to use binary search in a reasonable way.

• Maximum 2 points for an O(n) time algorithm.

2

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

3 Splitting Strings

Let Σ be a finite alphabet and L ⊆ Σ∗ be a language. You have access to a routine IsStringinL(x)
that on input x ∈ Σ∗ returns whether x ∈ L or not. Given w ∈ Σ∗ recall that w ∈ L∗ if and only if
w = w1w2 . . . wh for some h ≥ 1 such that each wi ∈ L; in this case we call w1w2 . . . wh a valid
L-split. In many applications we are interested in a L-valid split with some additional properties.
Given w and a split of w into w1, w2, . . . , wh we define the cost(w1, w2, . . . , wh) to be

∑h
i=1 |wi|2.

Describe an algorithm that given w ∈ Σ∗ outputs the minimum cost of any L-valid split. Your
algorithm should output∞ if there is no L-valid split of w. You can assume that isStringinL(x)
takes O(1) time in your analysis.

Solution: We solve this via DP.
To help the notation we define an auxiliary cost function on strings: for string w, cost(w)

is 1 if isStringinL(w) = 1 (that is w ∈ L), otherwise cost(w) =∞.
For 0 ≤ i ≤ n let MinCostSpli t(i) denote the cost of an L-valid split of w[1..i] where

w[1..i] is the prefix of w with the first i characters. We write a recursive relation for
MinCostSpli t.

MinCostSpli t(i) =

¨

0 i = 0

min1≤ j≤i MinCostSpli t(i − j) + | j|2 · cost(w[(i − j + 1)..i]) i ≥ 1

The output is MinCostSpli t(n).
We can memoize the recursion using a one-dimensional array of size n+ 1 to store the

values of MinCostSpli t(0), . . . , MinCostSpli t(n) and we evaluate the array from i = 0 to n
in increasing order. To compute MinCostSpli t(i) requires O(i) time based on the recursive
formula and hence the total time to compute all the values in the array is O(n2). ■

Standard dynamic programming rubric. 10 points =

• 3 points for a clear and correct English description of the recursive function you are trying to
evaluate. (Otherwise, we don’t even know what you’re trying to do.)

– No credit if the description is inconsistent with the recurrence.

– No credit if the description does not explicitly describe how the function value depends
on the named input parameters.

– No credit if the description refers to internal states of the eventual dynamic programming
algorithm, like “the current index” or “the best score so far”. The function must have
a well-defined value that depends only on its input parameters (and constant global
variables).

– An English explanation of the recurrence or algorithm does not qualify. We want a
description of what your function returns; points for an explanation of how that value is
computed are assigned in other items.

• 4 points for a correct recurrence, described either using mathematical notation or as pseudocode
for a recursive algorithm.

+ 1 for base case(s). −½ for one minor bug, like a typo or an off-by-one error.

+ 3 for recursive case(s). −1 for each minor bug, like a typo or an off-by-one error.

− 2 for greedy optimizations without proof, even if they are correct.

3

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

– No credit for iterative details if the recursive case(s) are incorrect.

• 3 points for iterative details

+ 1 for describing an appropriate memoization data structure. Hash tables are NOT an
appropriate memoization data structure!

+ 1 for describing a correct evaluation order; a clear picture is usually sufficient. If you
use nested for loops, be sure to specify the nesting order. (In particular, if you draw a
rectangle for a 2d array, be sure to label and direct the row and column indices.)

+ 1 for correct time analysis. (It is not necessary to state a space bound.)

• For problems that ask for an algorithm that computes an optimal structure—such as a subset,
partition, subsequence, or tree—an algorithm that computes only the value or cost of the
optimal structure is sufficient for full credit, unless the problem specifically says otherwise.

• Iterative pseudocode is not required for full credit, provided the other details of your solution
are clear and correct. We usually give two official solutions, one with pseudocode and one
without.

If your solution does includes iterative pseudocode, you do not need to separately describe
the recurrence, memoization structure, or evaluation order. But you do still need and English
description of the underlying recursive function (or equivalently, the contents of the memoiza-
tion structure). Perfectly correct iterative pseudocode, with no explanation or time
analysis, is worth at most 6 points out of 10.

• Partial credit for incomplete solutions depends on the running time of the best possible
completion (up to the target running time). For example, consider a solution that contains only
a clear English description of a function, with no recurrence or iterative details. If the described
function can be developed into an algorithm with the target running time, the solution is worth
3 points; however, if the function leads to an algorithm that is slower than the target time by a
factor of n, the solution could be worth only 2 points (= 70% of 3, rounded).

4

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

4 Collecting Rewards

This is a variant of a problem from Homework 9.
Let G = (V, E) be a directed graph in which each edge e ∈ E has a non-negative reward p(e)

that can be collected by traversing it. Describe an algorithm that given G, a starting vertex s ∈ V
and an integer k ≥ 0 computes the maximum reward that a walk starting at s can collect if it
is required to only collect reward from at most k edges. Note the the reward on an edge e is
counted only the first time it is traversed in the walk since it is gone after it is picked up.
(a) (2 pts) How would you solve the problem if G is strongly connected?

Solution: If G is strongly connected then there is a walk in G that starts in s and
visits all edges. Thus any set of k edge rewards can be collected. Thus the optimum
solution is simply output the sum of the largest k edge rewards which can be found in
O(m) time by doing selection on the edge rewards. Sorting and computing the largest
k rewards takes O(m log m) time but that is also an acceptable solution. ■

Rubric: 2 points for identifying that we need to find the k heaviest edges in the graph. No
penalty for an algorithm that runs in O(m log m) time instead of O(m).

(b) (8 pts) How would you solve the problem if G is a DAG?

Solution: We use DP. We can first remove all vertices and edges that are not reachable
from s since they will not be part of any feasible solution. We can then do a topological
sort of G to get v1, v2, . . . , vn; note that we must have v1 = s since we removed all
vertices not reachable from s. Note that in a DAG any walk starting at s is in fact a
path that starts at s = v1 and visits the vertices in the walk in increasing order of the
indices.

For v ∈ V and 0 ≤ h ≤ k we let M P(v, h) denote the max profit of a walk that
picks at most h edge rewards on a walk that starts in s and ends in v. This satisfies
the following recurrence:

M P(v, h) =











0 if v = s or h= 0

max

¨

max

�

M P(u, h),
M P(u, h− 1) + p(u, v)

�

�

�

�

�

�

(u, v) ∈ E

«

otherwise

The output is maxv∈V M P(v, k).
The DP can be memoized using a 2-D array of size n(k + 1) where the entry in

position [i, h] stores M P(vi , h). The evaluation can be done by iterating over h from 0
to k, and within each h iterating v in topological order (equivalently, iterating i from
1 to n); note that this is not the only valid evaluation order. The time to compute
each entry at a vertex v is proportional to the in-degree of v. Thus for each fixed h
the time to compute M P(v, h) for every v is proportional to

∑

v in− degree(v) = m.
Hence the total time for all h is O(mk). The initial topological sort takes O(m+ n)
time, so the total time is dominated by O(mk). ■

5

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

Standard dynamic programming rubric. 10 points =

• 3 points for a clear and correct English description of the recursive function you are trying to
evaluate. (Otherwise, we don’t even know what you’re trying to do.)

– No credit if the description is inconsistent with the recurrence.

– No credit if the description does not explicitly describe how the function value depends
on the named input parameters.

– No credit if the description refers to internal states of the eventual dynamic programming
algorithm, like “the current index” or “the best score so far”. The function must have
a well-defined value that depends only on its input parameters (and constant global
variables).

– An English explanation of the recurrence or algorithm does not qualify. We want a
description of what your function returns; points for an explanation of how that value is
computed are assigned in other items.

• 4 points for a correct recurrence, described either using mathematical notation or as pseudocode
for a recursive algorithm.

+ 1 for base case(s). −½ for one minor bug, like a typo or an off-by-one error.

+ 3 for recursive case(s). −1 for each minor bug, like a typo or an off-by-one error.

− 2 for greedy optimizations without proof, even if they are correct.

– No credit for iterative details if the recursive case(s) are incorrect.

• 3 points for iterative details

+ 1 for describing an appropriate memoization data structure. Hash tables are NOT an
appropriate memoization data structure!

+ 1 for describing a correct evaluation order; a clear picture is usually sufficient. If you
use nested for loops, be sure to specify the nesting order. (In particular, if you draw a
rectangle for a 2d array, be sure to label and direct the row and column indices.)

+ 1 for correct time analysis. (It is not necessary to state a space bound.)

• For problems that ask for an algorithm that computes an optimal structure—such as a subset,
partition, subsequence, or tree—an algorithm that computes only the value or cost of the
optimal structure is sufficient for full credit, unless the problem specifically says otherwise.

• Iterative pseudocode is not required for full credit, provided the other details of your solution
are clear and correct. We usually give two official solutions, one with pseudocode and one
without.

If your solution does includes iterative pseudocode, you do not need to separately describe
the recurrence, memoization structure, or evaluation order. But you do still need and English
description of the underlying recursive function (or equivalently, the contents of the memoiza-
tion structure). Perfectly correct iterative pseudocode, with no explanation or time
analysis, is worth at most 6 points out of 10.

• Partial credit for incomplete solutions depends on the running time of the best possible
completion (up to the target running time). For example, consider a solution that contains only
a clear English description of a function, with no recurrence or iterative details. If the described
function can be developed into an algorithm with the target running time, the solution is worth
3 points; however, if the function leads to an algorithm that is slower than the target time by a
factor of n, the solution could be worth only 2 points (= 70% of 3, rounded).

(Exercise for after the exam: combine these two parts to get an algorithm that works on an
arbitrary directed graph.)

6

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

5 Graphs

Let G = (V, E) be a directed graph and let e1 = (a, b) and e2 = (x , y) be two distinct edges. We
wish to know if there exists a path that uses both e1 and e2, with e1 appearing earlier in the path
than e2. Note that a path does not allow repetitions of vertices or edges while a walk allows both.

(a) Consider the following graph:

a

b

c

d

e

f

g

h

j

i

– (1 pt) Specify two edges e1 and e2 such that there is a path P in the graph with e1
before e2 in P.

Solution: e1 = a and e2 = c ■

– (1 pt) Specify two edges e1 and e2 such that there is a walk W in the graph with e1
before e2 in W but there is no such path in the graph.

Solution: e1 = i and e2 = e ■

Rubric: One point for each. These are not the only correct answers.

(b) (4 pts) Describe an efficient algorithm that given G = (V, E) and two distinct edges e1, e2 ∈ E
checks if there is a walk in G with e1 before e2

Solution: Let e1 = (u1, v1) and e2 = (u2, v2). There is a walk W with e1 before e2 iff
u2 is reachable from v1 in G. Thus the algorithm is simple.

– Use WFS from v1 in the graph G.
– If u2 is reachable from v1 report YES, otherwise NO.

Running time is O(n+m) time since we only use WFS on G. ■

Rubric: 4 points =

• 2 points for recognizing we have to check if u2 is reachable from v1.

• 1 point for applying WFS (or BFS/DFS).

• 1 point for run time analysis.

(c) (4 pts) Describe an efficient algorithm that given G = (V, E) and two distinct edges e1, e2 ∈ E
checks if there is a path in G with e1 before e2.

7

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

Solution: Let e1 = (u1, v1) and e2 = (u2, v2). Since a path cannot reuse vertices, we
can immediately say that there is no valid path if u1 = u2, u1 = v2, or v1 = v2. (It is
fine to have v1 = u2, since then we can make a path consisting of just the edges e1
and e2.) As long as none of these cases happen, we just need a path from v1 to u2 that
doesn’t use u1 nor v2. This is now simply a reachability problem on the graph G′ we
get by removing u1 and v2 (along with their adjacent edges) from G. Overall, this
gives us the following algorithm:

– If u1 = u2, u1 = v2, or v1 = v2 return NO
– Obtain graph G′ from G by removing u1 and v2, along with all incident edges
– Use WFS from v1 in G′ to find all reachable nodes from v1

– If u2 is reachable from v1 in G′ return YES, otherwise return NO

Computing G′ from G and running WFS both take O(n+m) time where n= |V |
and m= |E|. Thus total time is linear in the input size. ■

Rubric: 4 points =

• 1 point for checking if u1 = u2, u1 = v2, or v1 = v2. (Partial credit for only checking a
subset of these.)

• 1 point for constructing G′ by removing u1 and v2. (Half credit for only removing one of
these.)

• 1 point for applying WFS (or BFS/DFS).

• 1 point for run time analysis.

8

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

6 Shortest Paths with a Twist

Let G = (V, E) be a directed graph where each edge e has a non-negative length ℓ(e)> 0. Each
vertex v ∈ V also has a non-negative value a(v) specified in an array A. For simplicity, we will
assume that the a(v) values are distinct. You want to take a walk on this graph of total length at
most L, starting and ending at a specified vertex s.

(a) (3 pts) Given G, A, s, L and a specific vertex t, describe an efficient algorithm that checks if
there is a walk of length at most L that starts and finishes at s and visits t.

Solution: We note that if we want to visit t, we should follow the shortest path to get
from s to t, and then the shortest path back. If sum of these two lengths is less than
L, we can get to t; otherwise, we can’t. This gives us the following simple algorithm:

– Use Dijkstra’s algorithm in G from source s to compute dist(s, t)

– Use Dijkstra’s algorithm in G from source s in Grev to compute dist(t, s)

– If dist(s, t) + dist(t, s)≤ L output YES, otherwise NO

Total run time is O(|E| log |V |) for two invocations of Dijkstra’s algorithm. ■

Rubric: 2 points for a correct algorithm, 1 point for runtime analysis. Note that for this part
(but not the next), one can equivalently compute dist(s, t) by running Dijkstra’s starting from
t in G.

(b) (3 pts) Given G, A, s, L describe an efficient algorithm to compute the highest-value of a
vertex that any walk of length at most L that starts and finishes at s can visit.

Solution: The algorithm is essentially the same as the previous one.

– Use Dijkstra’s algorithm in G from source s to compute dist(s, v) for all v ∈ V

– Use Dijkstra’s algorithm in G from source s in Grev to compute dist(v, s) for all
v ∈ V

– Let Z = {u ∈ V | dist(s, u) + dist(v, s)≤ L}
– Let α=max{a(u) | u ∈ Z}
– Output α

Total run time is O(|E| log |V |) for two invocations of Dijkstra’s algorithm. Computing
Z and α takes O(n) time each. Thus the running time is dominated by the time for
Dijkstra’s algorithm. ■

Rubric: 2 points for a correct algorithm, 1 point for runtime analysis. Half credit for an
algorithm that runs in time O(|V | · |E| log |V |)—eg, by running part (a) for every vertex.

(Continued on next page)

9

“CS/ECE 374 A” Midterm 2 Solutions Spring 2025

(c) (4 pts) Let α be the maximum value that you computed in the previous part. Describe
an efficient algorithm to compute the second most valuable vertex your walk can reach
subject to visiting the one with value α. Your walk must still start and end at s and have
total length at most L.

Solution: Let v∗ be the vertex with α = a(v∗) such that d(s, v∗) + d(v∗, s) ≤ L. To
find the second highest valuable vertex we use graph reduction. The walk may visit
this second highest vertex before v∗ or after. We consider the two case separately
with the visit after v∗ being the first case.

– Construct graph G1 = (V ∪ {s′}, E ∪ {(s′, v∗)}) from G by adding a new vertex s′

and adding new edge (s′, v∗) of length dG(s, v∗). The other edges in G′ have the
same lengths as in G.

– Use Dijkstra’s algorithm in G1 from s′ to compute dG1
(s′, v) for all v ∈ V .

– Let β1 =max{a(v) | v ̸= v∗, dG1
(s′, v) + dG(v, s)≤ L}

– Construct G2 = (V ∪ {s′}, E rev ∪ {(s′, v∗)} from G by adding a new vertex s′ and
adding new edge (s′, v∗) with length dG(v∗, s). Here E rev is the reverse of edges
of E. The length of edges in E rev is the same as that in E.

– Use Dijkstra’s algorithm in G2 to compute dG′(s′, v) for each v ∈ V

– Let β2 =max{a(v) | v ̸= v∗, dG2
(s′, v) + dG(s, v)≤ L}.

– Output max{β1,β2}.

The running time of this algorithm is dominated by two Dijkstra computations on
graphs that have only a constant number of additional edges and vertices compared
to G and hence the total run time is O(|E| log |V |). ■

Rubric: 3 points for a correct algorithm, 1 point for run time analysis.

This problem turned out to be more difficult that we expected, so any correct polynomial-
time algorithm gets full credit. (For example, one can iterate over all possible vertices v ̸= v∗

and check if there is a walk of length at most L that vists (s, v, v∗, s) or (s, v∗, v, s) in that order.
We can then take the maximum a(v) for which this is true.

10

	Sums and Recurrences
	Recursion/Divide and Conquer/Sorting/Selection
	Splitting Strings
	Collecting Rewards
	Graphs
	Shortest Paths with a Twist

