
1

CS421 Fall 2009 Midterm 1
Thursday, October 1, 2009

• You have 75 minutes to complete this exam.
• This is a closed-book exam. You are allowed one 3inch by 5 inch card of notes

prepared by yourself. This card is not to be shared. All other materials, besides
pens, pencils and erasers, are to be away.

• Do not share anything with other students. Do not talk to other students. Do not
look at another student’s exam. Do not expose your exam to easy viewing by other
students. Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, you may seek clarification
from myself or one of the TAs. You must use a whisper, or write your question out.
Speaking out aloud is not allowed.

• Including this cover sheet and rules at the end, there are 8 sheets, 15 pages to the
exam, including one blank page for workspace. The exam is printed double sided.
Please verify that you have all 15 pages.

• Please write your name and NetID in the spaces above, and also at the top of every
sheet.

Name:

NetID:

2

Problems Possible Points Points Earned

1

2

3

4

5

6

7

8

9

PreTotal

Extra Credit

PostTotal

5

9

15

5

14

12

 8

15

17

100

10

110

3

CS 421 Midterm 1 Name:____________________________________

1. (5 pts total) Suppose that the following code is input into OCaml:
let a = “Hi”;;
let salute n = a ^ “, ” ^ n;;
let a = “Hello”;;
let b = salute “Joe”;;
let a = true;;
let s = salute “Sally”;;

For each of the following, write true or false after each statement.

a. (2 pts) b will have a value of

1) “Hello, Joe” false

2) “Hi, Joe” true

b. (3 pts) After the declaration of b,

1) The declaration let a = true;; will cause a type error.

false

2) The declaration let s = salute “Sally”;; will cause a type error.

false

3) The identifier s will have the value “Hello, Sally”

false

4

2. (9 pts total)
a. (3 pts) Write a function

do_each: ((’a -> ’b) * (’c -> ’d)) -> (’a * ’c) -> (’b * ’d)
that takes a pair of functions as a first argument and a pair of values as a
second argument, then returns the pair formed by applying the first function
to the first argument and the second function to the second argument.

let do_each (f, g) (x, y) = ((f x), (g y));;

What is the result of each of the following applications:

b. (2 pts) do_each (fun x -> x + 1) (fun y -> y > 3) (2, 7);;

A type eror because the first argument to do_each
must be a pair of function, not a function

c. (2 pts) do_each ((fun a -> a ^ “!”) , (fun z -> z > 0));;

A function of type : (string * int) -> (string * bool) taking a pair
of a string and an integer, and returning a pair of the original
string with ! on the end, and a boolean saying whether the integer was
strictly greater than 0.

d. (2 pts) do_each ((fun x -> x – 2) , (fun x -> x + 3)) (3, 19);;

(1, 22)

5

CS 421 Midterm 1 Name:____________________________________

3. (15 pts total) Consider the following OCaml code

let a = 10;;
let f = fun x -> x + a;;
let a = 20;;
let g = fun z -> f (2 * z);;

Describe the final environment that results from the execution of the above code if
execution is begun in an empty environment. Your answer should be written as a set of
bindings of variables to values, with only those bindings visible at the end of the execution
present. Your answer should be a precise mathematical answer, with a precise description
of values involved in the environment.

{ f → < (x) → x + a, { a → 10 }>, a → 20,
 g → <(z) → f(2 * z), { f → < (x) → x + a, {a → 10}>, a → 20 }

6

4. (5 pts) Write count : ’a list -> ’a -> int that such that count l a returns the number
of times that a occurs in l. You may use any form of recursion, and any standard
Library functions. Executing your code should give the following behavior:

count [1;2;0;3;4;0;1] 0;;
- : int = 2

let rec count list y =
 match list with [] -> 0
 | (x::xs) -> if x = y then 1+count xs y
 else count xs y;;

7

CS 421 Midterm 1 Name:____________________________________

5. (14 pts total)
a. (6 pts) Write a function separate : (’a -> bool) -> ’a list -> int * int such

that separate p l returns a pair of integers, where the first indicates the
number of elements of l for which p returns true, and the second indicates
the number of elements for which p returns false. The function is required to
use (only) forward recursion (no other form of recursion). You may not use
any library functions. Executing your code should give the following
behavior:

let rec separate p l = ... ;;
val separate : (’a -> bool) -> ’a list -> int * int = <fun>
separate (fun x -> x mod 2 = 0) [-3; 5; 2; -6];;
- : int * int = (2, 2)

let rec separate p l =
 match l with [] -> (0, 0)
 | (x::xs) ->
 (match separate p xs with (a,b) -> if p x then (a + 1, b) else (a, b +1));;

b. (8 pts) Rewrite separate as described above, using

List.fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

but no other Library functions and no explicit recursion.

let separate p l = List.fold_right
 (fun x -> fun (a,b) -> if p x then (a + 1, b) else (a, b +1))
 l
 (0,0);;

8

6. (12 pts) Write a function remove_allk that is a complete Continuation Passing
Style transformation of the following code:

let rec remove_all list m =
 match list with [] -> []
 | (x::xs) -> if x = m then remove_all xs m else x :: remove_all xs m;;

You may treat +, *, -, mod, /, ::, = all as built-in operators that do not need to be
converted to CPS. Your function should have the following type:

remove_allk : 'a list -> 'a -> ('a list -> 'b) -> 'b

let rec remove_allk list m k =
 match list with [] -> k []
 | (x::xs) -> if x=m then remove_allk xs m k
 else remove_allk xs m (fun r -> k(x::r));;

9

CS 421 Midterm 1
Name:____________________________________

7. (8 pts). I have a short wave radio at home. It can be off, or it can be on an FM
station, or an AM station, or an LW station or an MW station or an SW station. If
stations are all represented by floats, give an Ocaml datatype radio describing the
possible states of my radio. Assuming my radio can always be set to any station
(and ignoring the fact that floats may be negative, but stations can not), every state
of my radio should be describable by a term of type radio, and every term of type
radio (using positive floats) should describe some possible state of my radio.

type radio = Off | FM of float | AM of float | LW of float | MW of float | SW of float

10

8. (15 pts total) Consider the following Ocaml datatype:
type webpage = Content of (string * string * webpage list)
 | Data of (string * int);;

This OCaml data type webpage represents the following different kinds of
information about simple webpages: a content page with its URL as a string, its
content as a string, and its links as a list of webpage; or a data page with its URL as
a string, and its data as an int. Note that in this representation, a URL does not
determine webpage; multiple webpages may have the same URL. Write a function
get_all_data : webpage -> int list that, given a webpage, returns a list containing
the data (integer values) from all data pages reachable from that page. A page is
reachable if either it is the current page, or there is some series of links from the
current page that leads to it. You may use recursion and library functions from
OCaml freely.

let rec get_all_data wp =
 match wp with
 Content(url, content, links) ->
 (List.fold_right (fun w -> fun r -> (get_all_data w) @ r)
 links
 [])
 | Data (url, data) -> [data];;

11

CS 421 Midterm 1 Name:____________________________________
9. (17 pts total) Give a type derivation for the following type judgment:

 { } |- (let rec f = fun x -> if x > 0 then x + f (x – 1) else 17 in f 3) : int

You may use the attached sheet of typing rules. Label every use of a rule with the rule
used. You may abbreviate, but you must define your abbreviations. You may find it
useful to break you derivation into pieces. If you do, give names to your pieces, which
you may then use in describing the whole.

Let Γ1 = {f:int -> int} and Γ2 = {f:int -> int, x: int}
Let C=Constant Rule, V=Variables Rule, PO= Primitive Operations Rule, R=Relations
Rule, Conn=Connectives Rule, I= If_then_else Rule, A = Application Rule, F=
Function Rule, L=Let Rule, and LR=LetRec Rule

 V C
 Γ1 |- f : int -> int Γ1 |- 3 : int
 A
 Proof1 Γ1 |- f 3 : int
 LR
 { } |- (let rec f = fun x -> if x > 0 then x + f (x – 1) else 17 in f 3) : int

Where Proof1 =
 V C
 Γ2 |- x :int Γ2 |- 0:int
 V PO
 Γ2 |- f:int -> int Γ2 |- (x – 1) :int
V C V A
 Γ2 |- x :int Γ2 |- 0:int Γ2 |- x :int Γ2 |- f(x – 1) :int
 R PO C
 Γ2 |- (x > 0):bool Γ2 |- x + f (x – 1):int Γ2 |- 17 : int
 I
 Γ2 |- (if x > 0 then x + f (x – 1) else 17) : int
 F
 Γ1 |- (fun x -> if x > 0 then x + f (x – 1) else 17) : int -> int

12

Extra Credit: (10 pts) Write a function filterk that is a complete Continuation Passing Style
transformation of the following code:

let rec filter p list =
 match list with [] -> []
 | (x::xs) -> if p x then filter p xs else x :: filter xs

You may treat +, *, -, mod, /, ::, = all as built-in operators that do not need to be
converted to CPS. All procedures must be put in CPS form. Your function should
have the following type:

filterk : ('a -> (bool -> 'b) -> 'b) -> 'a list -> ('a list -> 'b) -> 'b

let rec filterk pk list k =
 match list with [] -> k [] |
 (x::xs) ->
 pk x
 (fun b -> if b then filterk pk xs (fun r -> k(x::r))
 else filterk pk xs k) ;;

13

CS 421 Midterm 1
Name:____________________________________

Worksheet (If extra space is needed).

14

15

CS 421 Midterm 1 Name:______________________________

Rules for type derivations:

Constants:

Γ|- n : int (assuming n is an integer constant)
___________ ____________
Γ|- true : bool Γ|- false : bool

Variables:

Γ |- x : σ if Γ(x) = σ

Primitive operators (⊕ ∈ { +, -, *, mod, …}):
 Γ |- e1 : int Γ |- e2 : int

 Γ |- e1 ⊕ e2 : int

Relations (˜ ∈ { < , > , =, <=, >= }):
Γ |- e1 : int Γ |- e2 : int

 Γ |- e1 ˜ e2 :bool

Connectives :
 Γ |- e1 : bool Γ |- e2 : bool Γ |- e1 : bool Γ |- e2 : bool

 Γ |- e1 && e2 : bool Γ |- e1 || e2 : bool

If_then_else rule:
 Γ |- e1 : bool Γ |- e2 : τ Γ |- e3 : τ

 Γ |- (if e1 then e2 else e3) : τ

Application rule: Function rule:
 Γ |- e1 : τ1 → τ2 Γ |- e2 : τ1 [x : τ1] + Γ |- e : τ2

 Γ |- (e1 e2) : τ2 Γ |- fun x -> e : τ1 → τ2

Let rule: Let Rec rule:
 Γ |- e1 : τ1 [x : τ1] + Γ |- e2 : τ2 [x: τ1] + Γ |- e1:τ1 [x: τ1] + Γ |- e2:τ2

 Γ |- (let x = e1 in e2) : τ2 Γ |- (let rec x = e1 in e2) : τ2

