
1

CS421 Fall 2009 Midterm 2
Thursday, November 5, 2009

• You have 75 minutes to complete this exam.
• This is a closed-book exam.. You are allowed one 3inch by 5 inch card of notes

prepared by yourself. This card is not to be shared. All other materials, besides
pens, pencils and erasers, are to be away.

• Do not share anything with other students. Do not talk to other students. Do not
look at another student’s exam. Do not expose your exam to easy viewing by
other students. Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, you may seek
clarification from myself or one of the TAs. You must use a whisper, or write
your question out. Speaking out aloud is not allowed.

• Including this cover sheet and rules at the end, there are 18 pages to the exam.
Please verify that you have all 18 pages.

• Please write your name and NetID in the spaces above, and also at the top of
every page.

Name:

NetID:

2

Problem Possible Points Points Earned

1 18

2 15

3 12

4 12

5 10

6 20

7 13

PreTotal 100

Extra Credit 8

PostTotal 108

3

CS 421 Midterm 2 Name:____________________________________

1. (18 points) Give a most general unifier for the following unification problem.
Capital letters A,B,C,D,E denote variables of unification and lower case letters f,
p and s denote constructors. Show all your work by listing the operation being
performed at each step, and all the results of that operation. Your final result
must be expressed as a single simultaneous substitution, not a composition of
individual substitutions.

{ p(f(A,C),E) = p(f(B,D), f(A,D)); s(E) = s(f(A,B)) }

Note: The notation f o g will refer to the function that first does g and then
applies f to the result. f o g (x) = f (g (x)),.

Solution:
Let ϕ = Unify { p(f(A,C),E) = p(f(B,D), f(A,D)); s(E) = s(f(A,B)) }. Then
ϕ = Unify { f(A,C) = f(B,D); E = f(A,D); s(E) = s(f(A,B)) } by Decompose
 = Unify { A = B; C = D; E = f(A,D); s(E) = s(f(A,B)) } by Decompose
 = Unify { A = B; C = D; E = f(A,D); E = f(A,B) } by Decompose
 = {A → ϕ1(B)} o ϕ1 by Elminate (A)
where
ϕ1 = Unify { C = D; E = f(B,D); E = f(B,B) }
 = {C → ϕ2(D)} o ϕ2 by Elminate (C)
where
ϕ2 = Unify { E = f(B,D); E = f(B,B) }
 = {E → ϕ3(f(B,D))} o ϕ3 by Elminate (E)
where
ϕ3 = Unify { f(B,B) = f(B,D) }
 = Unify { B = B; B = D} by Decompose
 = Unify { B = D} by Delete
 = {B → ϕ4(D)} o ϕ4 by Eliminate (B)
where ϕ4 = Unify { } = identity substitution.
Therefore,
ϕ3 = {B → D}. ϕ2 = {E → f(D,D); B → D}, ϕ1 = { C → D; E → f(D,D); B → D } and
ϕ = { A → D; C → D; E → f(D,D); B → D }

4

CS 421 Midterm 2 Name:____________________________________
2. (15 pts total) Adding to the code fragment given below, give an implementation

of the following rule for application:

Γ |- e1 : τ1 | C1 Γ |- e2 : τ2 | C2

Γ |- e1 e2: τ | {τ1 = τ2 →τ} ∪ C1 ∪ C2

The (slightly abbreviated) types for object language constructs are as follows:

type constTy = {name : string; arity : int}
type expType = TyVar of int | TyConst of (constTy * expType list)
type env = (string * expType) list
type judgment = { gamma:env; exp:exp; expType:expType }
type proof = {antecedents : proof list; conclusion : judgment}
type exp = … | ConstExp of const | … | AppExp of exp * exp | …

The type of gather_ty_constraints is

gather_ty_constraints : judgment -> (proof * (expType * expType) list) option

You may use fresh() to generate new numbers for fresh type variables, and
mk_fun_ty: expType -> expType -> expType
to make the type of functions from one type to another.

let rec gather_ty_constraints judgment =
 let {gamma = gamma; exp = exp; expType = tau} = judgment in
 match exp
 with ConstExp c ->
 let c_ty = const_signature c in
 Some ({antecedents = []; conclusion = judgment}, [(tau, c_ty)])
 | AppExp (e1, e2) ->
(* You add clauses here *)

Solution:
| AppExp (e1, e2) ->
 let (tau1, tau2) = (fresh(),fresh()) in
 (match
 (gather_ty_constraints {gamma = gamma; exp = e1; expType = tau1},
 gather_ty_constraints {gamma = gamma; exp = e2; expType = tau2})
 with (Some(e1_pf, e1_const), Some(e2_pf, e2_const))
 -> Some({antecedents = [e1_pf; e2_pf]; conclusion = judgment},
 (tau1, mk_fun_ty tau2 tau) :: (e1_const @ e2_const))
 | _ -> None)

I accidentally referred to tau as expType in rgw ConstExp clauses, and I have corrected
that here.

5

CS 421 Midterm 2 Name:____________________________________
More space for Problem 2.

6

CS 421 Midterm 2 Name:____________________________________

3. (12 pts total) Give a regular expression and a regular grammar generating each of
the following languages over the alphabet {0, 1}. You should use the notation
given in class: Regular expressions over an alphabet Σ are strings over Σ together
with the five extra characters (,), *, ∨, and ε. No other symbols should occur in
your regular expression, and they will not be accepted.

a. (6 pts) The set of all strings ending in 1 in which all 0’s are consecutive,
and there is at least one 0..

Solution: 1* 00*1*1

<S> ::= 1<S> | 0<T>
<T> ::= 0<T> | 1<U>
<U> ::= ε | 1<U>

b. (6 pts) The set of all strings with an even number of 1’s.

Soultion: (0*10*1)*0*

<S> ::= ε | 0<S> | 1<N>
<N> ::= 0<N> | 1<S>

7

CS 421 Midterm 2 Name:____________________________________

4. (12 points) Given the following BNF grammar, for each of the following strings,
give a parse tree for it if it parses starting with <Term>, or write “None exists” if
it does not parse starting with <Term>.

<Term> ::= p <Exp> | <Factor> n
<Exp> ::= <Id> % <Factor> | <Factor>
<Factor> ::= <Term> | <Id>
<Id> ::= 0 | 1

a. (2 pts) 1 n

Solution:

<Term>

<Factor> n

 <Id>

 1

8

CS 421 Midterm 2
Name:____________________________________

4. (cont) (12 pts total) Given the following BNF grammar, for each of the following
strings, give a parse tree for it if it parses starting with <Term>, or write “None
exists” if it does not parse starting with <Term>.

<Term> ::= p <Exp> | <Factor> n
<Exp> ::= <Id> % <Factor> | <Factor>
<Factor> ::= <Term> | <Id>
<Id> ::= 0 | 1

b. (5 pts) p 0 % 1 n 0 1 n n

Solution: None exists

9

CS 421 Midterm 2 Name:____________________________________

4. (cont) (12 pts total) Given the following BNF grammar, for each of the following
strings, give a parse tree for it if it parses starting with <Term>, or write “None
exists” if it does not parse starting with <Term>.

<Term> ::= p <Exp> | <Factor> n
<Exp> ::= <Id> % <Factor> | <Factor>
<Factor> ::= <Term> | <Id>
<Id> ::= 0 | 1

c. (5 pts) p 0 % p 1 % 0 n n

Solution: <Term>

<Factor> n

<Term>

<Factor> n

<Term>

p <Exp>

.
<Id> % <Factor>

0 <Term>

p <Exp>

<Id> % <Factor>

 1 <Id>

 0

10

CS 421 Midterm 2 Name:____________________________________
5. (20 points) Consider the following grammar:

<expr> ::= <atom> | p <atom> <expr>
<atom> ::= 0 | 1 | (<expr>)

a. (4 points) Write an Ocaml data type token for the tokens that lexer would generate
as input to a parser for this grammar.

Solution: type token = Ztk | Otk | Ptk | LPtk |RPtk ;;

b. (5 points) Write an Ocaml data types expr and atom to represent parse trees for
each of the syntactic categories in the given grammar.

Solution:

type expr = AtomExp of atom | PExp of (atom * expr)
and atom = ZeroAt | OneAt | ParenAt of expr ;;

11

CS 421 Midterm 2 Name:____________________________________
6. (cont) Consider the following grammar:

<expr> ::= <atom> | p <atom> <expr>
<atom> ::= 0 | 1 | (<expr>)

c. (11 points)Using the types you gave in parts a. and b., write an Ocaml recursive
descent parser parse: token list -> expr that, given a list of tokens, returns an
expr representing an <expr> parse tree. You should use

raise (Failure “no parse”)
for cases where no parse exists.

Solution:

let rec expr tks =
 (match tks
 with Ptk::tks_after_p ->
 (match atom tks_after_p with (atom_pt, tks_after_atom) ->
 (match expr tks_after_atom with (expr_pt, tks_after_expr) ->
 (PExp(atom_pt, expr_pt), tks_after_expr)))
 | _ ->
 (match atom tks with (atom_pt, tks_after_atom) ->
 (AtomExp(atom_pt), tks_after_atom))

and atom tks =
 match tks
 with Ztk::tks_after_0 -> (ZeroAt, tks_after_0)
 | Otk::tks_after_1 -> (OneAt, tks_after_1)
 | LPtk::tks_after_lp ->
 (match expr tks_after_lp with (expr_pt, tks_after_expr) ->
 (match tks_after_expr with RPtk::tks_after_rp ->
 (ParenAt(expr_pt), tks_after_rp)
 | _ -> raise (Failure "no parse")))
 | _ -> raise (Failure "no parse");;

let parse tks = match expr tks with (expr_pt, []) -> expr_pr
 | _ -> raise (Failure "no parse");;

12

CS 421 Midterm 2 Name:____________________________________
6. (13 points) Given the following grammar over nonterminal <m>, <e> and

<term>, and terminals z, o, l, r, p and eof, with start symbol <m>:
P0: <m> ::= <e> eof
P1: <e> ::= <t>
P2: <e>::= <t> p <e>
P3: <t>::= z
P4: <t>::= o
P5: <t>::= l <e> r

and Action and Goto tables generated by YACC for the above grammar:
Action Goto

State z o l r p [eof] <m> <e> <t>

st1 s 3 s 4 s 5 err err err st2 st7
st2 err err err err err a
st3 r 3 r 3 r 3 r 3 r 3 r 3
st4 r 4 r 4 r 4 r 4 r 4 r 4
st5 s 3 s 4 s 5 err err err st8 st7
st6 err err err err err a
st7 err err err r 1 s 9 r 1
st8 err err err s 10 err err
st9 s 3 s 4 s 5 err err err st11 st7

st10 r 5 r 5 r 5 r 5 r 5 r 5
st11 r 2 r 2 r 2 r 2 r 2 r 2

where sti is state i, s i means shift i, r i means reduce i, a means accept and [eof]
means we have reached the end of input, describe how the string lzpor[eof] would
be parsed with an LR parser using these productions and tables by filling in the
table on the next page. I have given you the first 5 cells to get started. Caution:
There are strictly more rows than you will need, so do not expect to fill them all.

13

CS 421 Midterm 2 Name:____________________________________

Stack Current String Action

Empty lzpor[eof] Initialize stack, go to state 1

st1 lzpor[eof] Shift and go to state 5

st1 :: l :: st5 zpor[eof] Shift and go to state 3

st1 :: l :: st5 :: z :: st3 por[eof] Reduce by P3, go to state 7

st1 :: l :: st5 :: <t>:: st7 por[eof] Shift and go to state 9

st1 :: l :: st5 :: <t>:: st7 :: p :: st9 or[eof] Shift and go to state 4

st1 :: l :: st5 :: <t>:: st7 :: p :: st9 :: o :: st4 r[eof] Reduce by P4, go to state 7

st1 :: l :: st5 :: <t>:: st7 :: p :: st9 :: <t> :: st7 r[eof] Reduce by P1, go to state 11

st1 :: l :: st5 :: <t>:: st7 :: p :: st9 :: <e> :: st11 r[eof] Reduce by P2, go to state 8

st1 :: l :: st5 :: <e>:: st8 r[eof] Shift and go to state 10

st1 :: l :: st5 :: <e>:: st8 :: r :: st10 [eof] Reduce by P5, go to state 7

st1 :: <t> :: st7 [eof] Reduce by P1, go to state 2

st1 :: <e> :: st2 [eof] accept

14

CS 421 Midterm 2 Name:____________________________________

7. (10 pts) Consider the following extended BNF grammar over the alphabet of tokens
0,1,a,b,m

< exp > ::= 0 | 1| b <exp> | <exp> a | <exp> m <exp>

a. (3 pts) Show that the given grammar is ambiguous.
Solution: b0a has two parses:

< exp > < exp >

b < exp > < exp > a

< exp > a b < exp >

 0 0

b. (7 pts) Write a new grammar generating the same language as the one
given above, but that is unambiguous, and such that a has higher
precedence than b, which in turn has higher precedence than m, and such
that m associates to the left.

Solution:

<exp> ::= <exp> m <nom> | <nom>
<nom> ::= b <nom> | <nob>
<nob> ::= 0 | 1 | <nob> a

15

CS 421 Midterm 2 Name:____________________________________
8. (Extra Credit) (8 pts total) The following grammar is ambiguous:

<exp> ::= true | false | if <exp> then <exp> | if <exp> then <exp> else <exp>

Given an unambiguous grammar generating the same language, such that if_then_ has

higher precedence than if_then_else_.

Solution:

This problem was somewhat ill-worded. The conflict is between the outer if_then /

if_then_else and one occurring in the then clause. The conflict is intended to be resolved

by giving the else to the inner if_then and leaving the outer one without an else.

<exp> ::= <unmatched_final_then> | <matched_final_then>

<unmatched_final_then> ::= if <exp> then <exp>

 | if <exp> then <matched_final_then> else <unmatched_final_then>

<matched_final_then> ::=

 if <exp> then <matched_final_then> else <matched_final_then> | true | false

If you seemed to be trying to do something that showed the right basic ideas we tried to

give majority credit.

16

CS 421 Midterm 2 Name:____________________________________

17

CS 421 Midterm 2 Name:______________________________

Rules for type derivations:

Constants:

Γ|- n : int (assuming n is an integer constant)
___________ ____________
Γ|- true : bool Γ|- false : bool

Variables:

Γ |- x : σ if Γ(x) = σ

Primitive operators (⊕ ∈ { +, -, *, …}):
 Γ |- e1 : int Γ |- e2 : int

 Γ |- e1 ⊕ e2 : int

Relations (˜ ∈ { < , > , =, <=, >= }):
Γ |- e1 : int Γ |- e2 : int

 Γ |- e1 ˜ e2 :bool

Connectives :
 Γ |- e1 : bool Γ |- e2 : bool Γ |- e1 : bool Γ |- e2 : bool

 Γ |- e1 && e2 : bool Γ |- e1 || e2 : bool

If_then_else rule:
 Γ |- e1 : bool Γ |- e2 : τ Γ |- e3 : τ

 Γ |- (if e1 then e2 else e3) : τ

Application rule: fun rule:
 Γ |- e1 : τ1 → τ2 Γ |- e2 : τ1 [x : τ1] ∪ Γ |- e : τ2

 Γ |- (e1 e2) : τ2 Γ |- fun x -> e : τ1 → τ2

let rule: let rec rule:
 Γ |- e1 : τ1 [x : τ1] ∪ Γ |- e2 : τ2 [x: τ1] ∪ Γ |- e1:τ1 [x: τ1] ∪ Γ |- e2:τ2

 Γ |- (let x = e1 in e2) : τ2 Γ |- (let rec x = e1 in e2) : τ2

18

