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CS421 Fall 2010 Midterm 1 
Thursday, October 7, 2009 

 
 
 
 
 

• You have 75 minutes to complete this exam. 
• This is a closed-book exam.  You are allowed one 3inch by 5inch card of notes prepared by 

yourself.  This card is not to be shared.  All other materials, besides pens, pencils and 
erasers, are to be away. 

• Do not share anything with other students.  Do not talk to other students.  Do not look at 
another student’s exam.  Do not expose your exam to easy viewing by other students.  
Violation of any of these rules will count as cheating. 

• If you believe there is an error, or an ambiguous question, you may seek clarification from 
myself or one of the TAs.  You must use a whisper, or write your question out.  Speaking out 
aloud is not allowed. 

• Including this cover sheet and rules at the end, there are 9 sheets, 17 pages to the exam, 
including one blank page for workspace.  The exam is printed double sided. Please verify that 
you have all 17 pages. 

• Please write your name and NetID in the spaces above, and also at the top of every sheet.  
 

Name:  

NetID:  
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CS 421 Midterm 1                              Name:____________________________________ 
 

1. (3 pts total)  Suppose that the following code is input one line at a time into OCaml: 
let h = 5;; 
let y = 3.14;; 
let cyl_vol r h  = y *.  r *. h;; 
let y = 4.0;; 
let a = cyl_vol 2.0 1.0;; 
let b = cyl_vol (1.0, 1.0);; 
let c = cyl_vol  3.0;; 

 
For each of a, b, and c, either give what is returned, or give the reason why nothing is returned.  

 
a. (1 pt) Tell what is returned, if anything, for a: 

 
 
Soluiton:  6.28 
 
 
 
 
 

 
b. (1 pt) Tell what is returned, if anything, for b: 

 
 
 
 
Solution: type error: cyl_vol should first be applied to an argument of type int, but here is applied to 
An argument of type int * int 
 
 
 
 

c. (1 pt) Tell what is returned, if anything, for c: 
 
 
Solution:  A function that computes fun h -> 3.14 *. 3.0 *. h
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2. (8 pts total) Consider the following OCaml code:   

let f = (fun x -> (fun y -> y && x)) in let g = f true in f (g true) (g false) 
Below is the same code augmented by having almost every program point instrumented with a 
print statement.  Assuming OCaml’s current order of execution, evaluating the argument before 
evaluating the function in an application, write the sequence of characters printed by the following 
code (not including the type information for the declaration): 

let ps s = print_string s;; 
let f = (ps "a"; (fun x -> (ps "b"; (fun y -> ((ps "c"; y) && (ps "d"; x)))))) in 
let g = ((ps "e"; f) (ps "f"; true)) in 
(ps "g";  
 (((ps "h"; f) 
   ((ps "i"; g) (ps "k"; true)) 
  ) 
   (ps "m"; 
    ((ps "n"; g) (ps "p"; false)) 
   ) 
 ) 
);; 

 
 
Solution: afebgmpnckicdhbc
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3. (11 pts total) Consider the following OCaml code 

 
let x = 5;; 
let a = x + 4;; 
let f x y = x + y + a;; 
let h z  = f (z + 4);; 
let a = 
  let h x = f a (h 3 x) in 
   h (2 * x);; 

Describe the final environment that results from the execution of the above code if execution is begun 
in an empty environment.  Your answer should be written as a set of bindings of variables to values, 
with only those bindings visible at the end of the execution present.  Your answer should be a precise 
mathematical answer, with a precise description of values involved in the environment.  The update 
operator (+) and abbreviations should not be used. 

 
 
 
Solution:       {x → 5,  

f → <x → fun y -> x + y + a, {x →5, a → 9}>, 
h → <z → f (z + 4), { f → <x → fun y -> x + y + a, {x →5, a → 9}>,  
                                    a → 9; x → 5>}>. 
a → 44} 
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4. (7 pts )  Write a function unzip : (’a * ‘b) list -> ’a list * ‘b list that, when given a list of pairs,  
returns a pair of lists such that the first list consists of first element of each pair in the given list, 
and the second list consists of the second element in each pair of the given list. The order of the 
elements in the returned list should be the same as the order of the corresponding elements in the 
given list.  A sample execution is as follows: 

# let rec unzip l = …  
val unzip : ('a * 'b) list -> 'a list * 'b list = <fun> 
# unzip [(1,2); (3,4); (5,6)];; 
- : int list * int list = ([1; 3; 5], [2; 4; 6]) 

 
 
Solution: 
 
 let rec unzip l = 
      match l with [] -> ([],[]) 
       |  (a,b) :: rest -> 
         (match unzip rest with (flist, slist) -> (a::flist, b::slist));;
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5. (9 pts total)  

a. (5 pts) Write a function rev_compose:  (‘a -> ‘a) list -> ‘a  -> ‘a such that rev_compose flist 
returns the result of composing the functions in flist in reverse (left to right) order.  The result of 
applying rev_compose to the empty list of functions should be the identity function (that takes 
an element to itself).  The function is required to use (only) tail recursion (no other form of 
recursion). You may start your code in a manner different from shown below and you may use 
auxiliary functions of your own so long as the only form of recursion used is tail recursion, but 
you may not use any library functions. Executing your code should give the following behavior: 

# let rec rev_compose flist x = ... ;;  
val rev_compose : ('a -> 'a) list -> 'a -> 'a = <fun> 
# rev_compose [(fun x -> 2 * x); (fun y -> y - 1)] 5;; 
- : int = 9 

Solution:  
let rec rev_compose flist x = 
    match flist with [] -> x 
     | f::fs -> rev_compose fs (f x) 
 

 
 
 
 
 
 
 

b. (4 pts) Rewrite rev_compose as described above, using 

List.fold_left : : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a  
but no other library functions and no explicit recursion. 

 

Solution: 
  let rev_compose flist x = 
                            List.fold_left (fun acc_value -> fun f -> f acc_value) x flist 
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6.  (10 pts)  Write a function sum_squarek that is a complete Continuation Passing Style 

transformation of the following code: 
let rec sum_square n =  
  if n <= 0 then 0 else (sum_square (n – 1)) + ( n * n);; 

You may treat +, *, -, ,<=  all as built-in operators that do not need to be converted to CPS.  Your 
function should have the following type: 

sum_squarek : int -> (int -> ‘a) -> ‘a 
 
 
Solution:  
    let rec sum_squarek n k = 
      if n<= 0 then k 0 
      else sum_squarek (n – 1) (fun ss -> k(ss + (n * n)));;
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7. (7 pts).  Create an OCaml recursive data type to describe paths on a grid from a fixed start location.   

A path is either a horizontal move of n blocks (positive to the right and negative to the left) 
together with a remaining path, or it is a vertical move of m blocks (positive is up and negative 
down), again together with a remaining path, or it is the end of the path.  Both n and m are 
integers. 

 
 
Soluiton: type path = End | Horizontal of int * path | Vertical of int * path 
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8. (13 pts total) Consider the following Ocaml recursive data type: 

type  prop = Atom of string 
| Not of prop 
| Or of prop * prop 
| And of prop * prop 
| Implies of prop * prop 

This OCaml data type prop represents propositional formulae built with connectives of the same 
name.  Write a function eImp : prop -> prop that eliminates all instances of  implication from a 
proposition using the fact that A ⇒ B ≡ (¬A) ∨ B.  You may use recursion, auxiliary functions, 
and library functions from OCaml freely. 

 
 
Solution:  
   let rec eImp p = 
         match p with Atom _ -> p 
          | Not a -> Not(eImp a) 
          |  Or(a, b) -> Or(eImp a, eImp b) 
          |  And(a, b) -> And(eImp a, eImp b) 
          |  Implies(a, b) -> Or(Not(eImp a), eImp b);; 
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9. (13 pts total) Give a type derivation for the following type judgment: 

 
       {x:bool, y:bool } |- (let f = fun x -> (x > 7)  && y in if f 2 then x else y ) : bool  

 
You may use the attached sheet of typing rules.  Label every use of a rule with the rule used. You 
may abbreviate, but you must define your abbreviations.  You may find it useful to break your 
derivation into pieces.  If you do, give names to your pieces, which you may then use in 
describing the whole. 
 

Solution: 
Let V stand for the variable rule, C stand for the constants rule, PO stand for the primitive operations 
rule, AR stand for the arithmetic relations rule, LC for logical connectives, ITE for the if then else 
rule, F stand for the function rule, APP for the application rule, L for the let, and LR for the let-rec 
rule. 
 
Let Γ1 = {x:bool, y:bool } 
Let Γ2 = {x:bool, y:bool, f: int -> bool} 
Let Γ3 = {x:int, y:bool } 
 
 
 
 
 
 

--------------V     --------------C 
Γ3 |- x : int          Γ3 |- 7: int 
-------------------------------AR  --------------V    --------------------V   ------------ C 

Γ3 |- (x > 7) : bool    Γ3 |- y :  bool     Γ2 |- f : int  ->bool    Γ2 |-  2 : int 
--------------------------------------- LC   --------------------------------APP   ------------V        ---------------V 
Γ3 |- (x > 7)  && y :  bool             Γ2 |- f 2 : bool                 Γ2 |- x : bool       Γ2 |- y  : bool 
--------------------------------------------------F   ---------------------------------------------------------------ITE 
 Γ1 |- (fun x -> (x > 7)  && y): int -> bool                    Γ2 |- (if f 2 then x else y ) : bool  
---------------------------------------------------------------------------------------------------------L 
  {x:bool, y:bool } |- (let f = fun x -> (x > 7)  && y in if f 2 then x else y ) : bool 
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10.  (19 pts)  Give a type inference for the following type judgment: 

 
         { } |- (let rec f = fun x -> f (x – 1) in f 3 > 0 ) : α  

 
You may use the attached sheet of typing rules.  Label every use of a rule with the rule used. You 
may abbreviate, but you must define your abbreviations.  You may find it useful to break your 
inference into pieces.  If you do, give names to your pieces, which you may then use in describing 
the whole.  Your constraints should be given in a single set of equations.  All constraints directly 
necessary for the validity of the type inference from the rules must be present.  Duplicates and 
identities (x = x) may be removed. Orientation of equations does not matter. 

 
Solution: 
Let V stand for the variable rule, C stand for the constants rule, PO stand for the primitive operations 
rule, AR stand for the arithmetic relations rule, LC for logical connectives, ITE for the if then else 
rule, F stand for the function rule, APP for the application rule, L for the let, and LR for the let-rec 
rule. 
 
 
 
            ---------------------V --------------------C 
            {x:γ , f:β} |- x : int  {x:γ , f:β} |- 1 : int 

--------------------V    -----------------------------------------PO  ----------------------V --------------C 
{x:γ , f:β} |- f: ε-> δ    {x:γ , f:β} |- (x – 1) : ε                         {f:β} |-  f : φ  -> int    {f:β} |-  3: φ  
----------------------------------------------------APP                  ---------------------------------------APP  ----------------C 

{x:γ , f:β} |- (f (x – 1)) : δ                                          {f:β} |-  f 3: int                             {f:β} |-  0  : int 
----------------------------------F                                   --------------------------------------------------------AR 
{f:β} |- (fun x -> f (x – 1)) : β                                                  {f:β} |-  (f 3 > 0 ) : α  
--------------------------------------------------------------------------------------------------LR 

                       { } |- (let rec f = fun x -> f (x – 1) in f 3 > 0 ) : α  
 

Constraints: { β  = γ  -> δ ,  β  = ε-> δ , γ  = int, ε= int,  α  = bool, β  = φ  -> int,  φ  = int} 
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11. Extra Credit: (10 pts) Write a function lastk that is a complete Continuation Passing Style 

transformation of the following code: 
let last p l = 
   let rec last_aux p l x = 
        match l with [] -> x 
        | y::ys -> last_aux p ys (if p y then Some y else x) 
   in last_aux p l None;; 

You may treat Some as a built-in operator that does not need to be converted to CPS.  All 
procedures must be put in CPS form.  Your function should have the following type: 

lastk : ('a -> (bool -> 'b) -> 'b) -> 'a list -> ('a option -> 'b) -> 'b 
 
 
Solution:  
 
let lastk pk l k = 
    let rec last_aux pk l x k = 
     match l with [] -> k x 
      | y::ys -> pk y 
        (fun b -> let a = if b then Some y else x in last_aux pk ys a k) 
in last_aux pk l None k;; 
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Rules for type derivations: 
 
Constants:  
________ 
Γ|- n : int   (assuming n is an integer constant) 
___________           ____________ 
Γ|- true : bool            Γ|- false : bool 
 
Variables: 
_______  
Γ |- x : σ     if Γ(x) = σ 
 
Primitive operators ( ⊕ ∈ { +, -, *, mod, …}): 
 Γ |- e1 : int     Γ |- e2 : int 

        Γ |- e1 ⊕ e2 : int 

Relations ( ˜ ∈ { < , > , =, <=, >= }): 
Γ |- e1 : int     Γ |- e2 : int 

       Γ |- e1 ˜  e2 :bool 
 
Connectives : 
 Γ |- e1 : bool     Γ |- e2 : bool        Γ |- e1 : bool     Γ |- e2 : bool 

      Γ |- e1 && e2 : bool                         Γ |- e1 || e2 : bool 
 
If_then_else rule: 
 Γ |- e1 : bool   Γ |- e2  : τ   Γ |- e3  : τ 

      Γ |- (if e1 then e2  else e3) : τ 
 
Application rule:    Function rule: 
 Γ |- e1 : τ1 → τ2   Γ |- e2  : τ1      [x : τ1 ] + Γ |- e  : τ2 

          Γ |- (e1 e2) : τ2    Γ |- fun x -> e  : τ1 → τ2 

 
Let rule:     Let Rec rule: 
 Γ |- e1  : τ1       [x : τ1 ] + Γ |- e2  : τ2  [x: τ1 ] + Γ |- e1:τ1      [x: τ1 ] + Γ |- e2:τ2 

    Γ |- (let x = e1 in e2 ) : τ2                  Γ |- (let rec x = e1 in e2 ) : τ2 


