
 1

CS421 Fall 2010 Midterm 2
Thursday, November 11, 2010

• You have 75 minutes to complete this exam.
• This is a closed-book exam.. You are allowed one 3inch by 5 inch card of notes

prepared by yourself. This card is not to be shared. All other materials, besides
pens, pencils and erasers, are to be away.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other
students. Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, you may seek clarification
from myself or one of the TAs. You must use a whisper, or write your question out.
Speaking out aloud is not allowed.

• Including this cover sheet and rules at the end, there are 18 pages to the exam. Please
verify that you have all 18 pages.

• Please write your name and NetID in the spaces above, and also at the top of every
page.

Name:

NetID:

 2

Problem Possible Points Points Earned

1 18

2 15

3 12

4 12

5 20

6 13

7 10

PreTotal 100

Extra Credit 8

PostTotal 108

 3

CS 421 Midterm 2 Name:____________________________________

1. (18 points) Give a most general unifier for the following unification problem.
Capital letters A and B denote variables of unification and lower case letters f, p and s
denote constructors. Show all your work by listing the operation being performed at
each step, and all the results of that operation, including intermediate substitutions
generated. Your final result must be expressed as a single simultaneous substitution,
not a composition of individual substitutions.

{(f(A,C) = B); (p(s(A), s(B)) = p(C, s(B)))}
Note: The notation f o g will refer to the function that first does g and then applies f
to the result. f o g (x) = f (g (x)),.

Solution:
Unify {(f(A,C) = B); (p(s(A), s(B)) = p(C, s(B)))}
= Unify {(B = f(A,C)); (p(s(A), s(B)) = p(C, s(B)))} by Orient (f(A,C) = B)
= Unify {(p(s(A), s(f(A,C))) = p(C, s(f(A,C)))} with {B  f(A,C)}
 by Eliminate (B = f(A,C))
= Unify {(s(A) = C); (s(f(A,C)) = s(f(A,C)))} with {B  f(A,C)}
 by Decompose (p(s(A), s(f(A,C))) = p(C, s(f(A,C)))
= Unify {(C = s(A)); (s(f(A,C)) = s(f(A,C)))} with {B  f(A,C)} by Orient (s(A)  C)
= Unify {(s(f(A, s(A))) = s(f(A, s(A))))} with {C  s(A); B  f(A, s(A))}
 by Eliminate (C = s(A))
= Unify {} with {C  s(A); B  f(A, s(A))} by Delete
= {C  s(A); B  f(A, s(A))}

 4

 CS 421 Midterm 2 Name:____________________________________

2. (12 pts total) In parts a) through c) you are to give a regular expression generating each of

the following languages over the alphabet Σ = {a, b, c}. You should use the notation
given in class: Regular expressions over an alphabet Σ are strings over Σ together with
the five extra characters (,), *, ∨ , and ε . No other symbols should occur in your
regular expression, and they will not be accepted. In part d) you are asked to give a
regular grammar for the language in a).

a. (2 pts) Give a regular expression for the set of all strings that either contain no a’s or

no b’s.

Soultion:
(b ∨ c)* ∨ ((a ∨ b)*)

b. (4 pts) Give a regular expression for the set of all strings such that no a may be
followed at any distance by a b, no b may followed at any distance by a c, and no c
may be followed at any distance by an a.

Solution:
(a*c*) ∨ (b*a*) ∨ (c*b*)

 5

CS 421 Midterm 2 Name:____________________________________

2. (12 pts total) In parts a) through c) you are to give a regular expression generating each of

the following languages over the alphabet Σ = {a, b, c}. You should use the notation
given in class: Regular expressions over an alphabet Σ are strings over Σ together with
the five extra characters (,), *, ∨ , and ε . No other symbols should occur in your
regular expression, and they will not be accepted. In part d) you are asked to give a
regular grammar for the language in a).

c. (4 pts) Give a regular expression for the set of all strings that do not end in cab.

 Solution:
 ε ∨ ((a ∨ b ∨ c)*(a ∨ c)) ∨ ((a ∨ b ∨ c)*(b ∨ c)b) ∨ ((a ∨ b ∨ c)*(a ∨ b)ab)

d. (3 pts) Give a regular grammar for the set of all strings that either contain no a’s or no
b’s.

Solution:
S ::= a A | b B | c S | ε
A ::= b A | c A | ε
B ::= a B | c B | ε

 6

CS 421 Midterm 2 Name:____________________________________

3. (12 points total) Given the following BNF grammar, for each of the following strings,

give a parse tree for it, if it parses starting with <Term>, or write “None exists” if it does
not parse starting with <Term>. The terminals for this grammar are {%, b, g, d, x, y, z}.

<Term> ::= <Var> | <Term> % <Term> | <Factor> b | g <Term> d
<Factor> ::= g <Term> | g <Factor>
<Var> ::= x | y | z

a. (2 pts) g x % y d

Solution:

 <Term>
 / | \
 g <Term> d
 / | \
 <Term> % <Term>
 | |
 <Var> <Var>
 | |
 x y

 7

CS 421 Midterm 2 Name:____________________________________

3. (cont) Given the following BNF grammar, for each of the following strings, give a parse

tree for it, if it parses starting with <Term>, or write “None exists” if it does not parse
starting with <Term>. The terminals for this grammar are {%, b, g, d, x, y, z}.

<Term> ::= <Var> | <Term> % <Term> | <Factor> b | g <Term> d
<Factor> ::= g <Term> | g <Factor>
<Var> ::= x | y | z

b. (5 pts) g x % g g y b

Solution: None exists

 8

CS 421 Midterm 2 Name:____________________________________

3. (cont) Given the following BNF grammar, for each of the following strings, give a parse

tree for it, if it parses starting with <Term>, or write “None exists” if it does not parse
starting with <Term>. The terminals for this grammar are {%, b, g, d, x, y, z}.

<Term> ::= <Var> | <Term> % <Term> | <Factor> b | g <Term> d
<Factor> ::= g <Term> | g <Factor>
<Var> ::= x | y | z

c. (5 pts) g g g x % y d b % z

 Solution:
 <Term>
 / | \
 <Term> % <Term>
 / \ \
 <Factor> b <Var>
 / \ |
 g <Factor> z
 / \
 g <Term>
 / | \
 g <Term> d
 / | \
 <Term> % <Term>
 | |
 <Var> <Var>
 | |
 x y

 9

CS 421 Midterm 2 Name:____________________________________
4. (18 points total) Consider the following grammar over the alphabet {λ , . , (,), x, y, z}:

<exp> ::= <var> | λ <var> . <exp> | <exp> <exp> | (<exp>)
<var> ::= x | y | z

a. (6 pts) Show that the above grammar is ambiguous (using the definition of an
ambiguous grammar).

Solution: λ x . x y has two parses

 <exp> <exp>

 / / \ \ / \
 λ <var> . <exp> <exp> <exp>
 / / \ / / \ \ \
 x <exp> <exp> λ <var> . <exp> <var>
 | | | | |
 <var> <var> x <var> y
 | | |
 x y x

 10

CS 421 Midterm 2 Name:____________________________________
4. (18 points total) Consider the following grammar over the alphabet {λ , . , (,), x, y, z}:

<exp> ::= <var> | λ <var> . <exp> | <exp> <exp> | (<exp>)
<var> ::= x | y | z

b. (12 pts) Write a new grammar accepting the same language accepted by <exp> above,

and such that application (<exp> <exp>) associates to the left and has higher
precedence than abstraction (λ <var> . <exp>).

Solution:
 <exp> ::= <no_abs> <no_app> | <no_app>
 <no_abs> ::= <no_abs> <atom> | <atom>

<no_app> ::= λ <var> . <exp> | <atom>
<atom> ::= <var> | (<exp>)
<var> ::= x | y | z

 11

CS 421 Midterm 2
Name:____________________________________

5. (20 points total) Consider the following grammar:
<expr> ::= <atom> | <atom> * <expr>
<atom> ::= 0 | (<expr>)

a. (3 pts) Write an Ocaml data type token for the tokens that lexer would generate as
input to a parser for this grammar.

Solution:

type token = Star | Zero | LPar | RPar

b. (4 pts) Write Ocaml data types expr and atom to represent parse trees for each of the
syntactic categories in the given grammar.

Solution:

type expr = AtomExpr of atom | StarExpr of (atom * expr)
and atom = ZeroAtom | ParensAtom of expr

 12

CS 421 Midterm 2 Name:____________________________________
5. (cont)(20 points total) Consider the following grammar:

<expr> ::= <atom> | <atom> * <expr>
<atom> ::= 0 | (<expr>)

c. (13 pts)Using the types you gave in parts a) and b), write an Ocaml recursive descent
parser parse: token list -> expr that, given a list of tokens, returns an expr
representing an <expr> parse tree. You should use

raise (Failure “no parse”)
 for cases where no parse exists.

Solution:

let rec expr tokens =
 match atom tokens with (atom_parse, s_toks) ->
 (match s_toks with Star::e_toks ->
 (match expr e_toks
 with (expr_parse, toks) -> (StarExpr(atom_parse, expr_parse),toks))
 | _ -> (AtomExpr atom_parse, s_toks))
and atom tokens =
 match tokens
 with Zero::toks1 -> (ZeroAtom, toks1)
 | LPar :: toks1->
 (match expr toks1 with (expr_parse, toks2) ->
 (match toks2 with RPar::toks3 -> (ParensAtom expr_parse, toks3)
 | _ -> raise (Failure “no_parse”)))
 | _ -> raise (Failure “no_parse”)

let parse tokens = match expr tokens with (e,[]) -> e | _ -> raise (Failure “no_parse”)

 13

CS 421 Midterm 2 Name:____________________________________
Workspace

 14

CS 421 Midterm 2 Name:____________________________________
6. (13 pts) Given the following grammar over nonterminal and <e>, and terminals

z, l, r, p and eof, with start symbol :
P0: ::= <e> eof
P1: <e> ::= z
P2: <e>::= l <e> r
P3: <e>::= <e> p

 and Action and Goto tables generated by YACC for the above grammar:
Action Goto

State z l r p [eof] <e>
st1 s 3 s 4 err err err st5
st2 err err err err a
st3 r 1 r 1 r 1 r 1 r 1
st4 s 3 s 4 err err err st6
st5 err err err s 7 a
st6 err err s 8 s 7 err
st7 r 3 r 3 r 3 r 3 r 3
st8 r 2 r 2 r 2 r 2 r 2

where sti is state i, s i means shift i, r i means reduce i, a means accept and [eof]
means we have reached the end of input, describe how the string lzprp[eof] would be
parsed with an LR parser using these productions and tables by filling in the table on
the next page. I have given you the first 5 cells to get started. Caution: There are
strictly more rows than you will need, so do not expect to fill them all.

 15

CS 421 Midterm 2 Name:____________________________________

Stack Current String Action

Empty lzprp[eof] Initialize stack, go to state 1

st1 lzprp[eof] Shift, go to state 4

st1:l:st4 zprp[eof] Shift, go to state 3

st1:l:st4:z:st3 prp[eof] Reduce by P1, go to state 6

st1:l:st4:<e>:st6 prp[eof] Shift, go to state 7

st1:l:st4:<e>:st6:p:st7 rp[eof] Reduce by P3, go to state 6

st1:l:st4:<e>:st6 rp[eof] Shift, go to state 8

st1:l:st4:<e>:st6:r:st8 p[eof] Reduce by P2, go to state 5

st1:<e>:st5 p[eof] Shift, go to state 7

st1:<e>:st5:p:st7 [eof] Reduce by P3, go to state 5

st1:<e>:st5 [eof] accept

 16

CS 421 Midterm 2 Name:____________________________________

7. (16 points total)

a. (6 pts) Give a natural semantics (a.k.a. structured operational semantics) derivation of
the evaluation of:

 ((x:= 3; x := x + 2), {x → 1})

.

 .
 (x, {x → 3}) ⇓ 3 (2, {x → 3}) ⇓ 2 3+2=5
(x:= 3, {x → 1}) ⇓ {x → 3} (x := x + 2, {x → 3}) ⇓ {x → 5}
 ((x:= 3; x := x + 2), {x → 1}) ⇓ {x → 5}

 17

CS 421 Midterm 2 Name:____________________________________

a. (16 points total) (cont)

b. (10 pts) Give a transition semantics derivation of the evaluation of:
 ((x:= 3; x := x + 2), {x → 1})

 (x := 3, {x →1})  {x →3} .
 ((x:= 3; x := x + 2), {x → 1})  (x := x + 2, {x →3})

 (x, {x →3})  (3, {x →3}) .
 (x + 2, {x →3})  (3 + 2, {x →3}) .
(x := x + 2, {x →3})  (x := 3 + 2, {x →3})

 (3 + 2, {x →3})  (5, {x →3}) .
(x := 3 + 2, {x →3})  (x := 5, {x →3})

(x := 5, {x →3})  {x →5}

 18

CS 421 Midterm 2 Name:____________________________________
b. (Extra Credit) (8 points total) Assuming you have written a lexer for a programming

language without comments with entry point called token (taking no extra arguments),
what code would you need to add to the header, the body of token and extra entry points
to add comments that start with /* and end with */ and allow for comments to be nested
within comments.
Do not assume that we are track line and character numbers. You should
 raise (Failure “No closing comment”)
if the end of the file is reached after a /* and before a matching */.

a. Changes to header (if any):

Soultion:

let open_comment = "/*"

let close_comment = "*/"

b. Changes to the body of token (if any):

Solution:

| open_comment {comment 1 lexbuf}

c. Additional entry points (if any):

Solution:

and comment lpars = parse

 open_comment {comment (lpars + 1) lexbuf}

 | close_comment { if lpars = 1 then token lexbuf else comment (lpars – 1) lexbuf }

 | eof { raise (Failure “No closing comment”) }

 | _ { comment lpars lexbuf }

 19

CS 421 Midterm 2 Name:___________________________________

Simple Imperative Programming Language

I ∈ Identifiers N ∈ Numerals

B ::= true | false | B & B | B or B | not B | E < E | E = E

E::= N | I | E + E | E * E | E - E | - E

C::= skip | C;C | I ::= E | if B then C else C fi | while B do C od

Natural Semantics Rules

Identifiers: (I,m) ⇓ m(I) Numerals are values: (N,m) ⇓ N

Booleans: (true,m) ⇓ true (false ,m) ⇓ false

 (B, m) ⇓ false (B, m) ⇓ true (B’, m) ⇓ b
(B & B’, m) ⇓ false (B & B’, m) ⇓ b

 (B, m) ⇓ true (B, m) ⇓ false (B’, m) ⇓ b
(B or B’, m) ⇓ true (B or B’, m) ⇓ b

(B, m) ⇓ true (B, m) ⇓ false (E, m) ⇓ U (E’, m) ⇓ V U ~ V = b
 (not B, m) ⇓ false (not B, m) ⇓ true (E ~ E’, m) ⇓ b (~ a relation)

Arithmetic Expressions: (E, m) ⇓ U (E’, m) ⇓ V U op V = N
 (op an arith binary operation) (E op E’, m) ⇓ N

 Commands:

Skip: (skip, m) ⇓ m Assignment: (E,m) ⇓ V ,
 (I::=E,m) ⇓ m[I  V]

Sequencing: (C,m) ⇓ m’ (C’,m’) ⇓ m’’
 (C;C’, m) ⇓ m’’

If Then Else Command:

 (B,m) ⇓ true (C,m) ⇓ m’ (B,m) ⇓ false (C’,m) ⇓ m’ ,
 (if B then C else C’ fi, m) ⇓ m’ (if B then C else C’ fi, m) ⇓ m’

While Command:

 (B,m) ⇓ false (B,m)⇓true (C,m)⇓m’ (while B do C od, m’)⇓m’’
(while B do C od, m) ⇓ m (while B do C od, m) ⇓ m’’

 20

CS 421 Midterm 2 Name:___________________________________

Transition Semantics:
Identifiers: (I,m)  m(I) Numerals are values: (N,m)  N

Booleans:

(false & B, m)  (false, m) (true & B, m)  (B,m) (B, m)  (B’’, m)
 (B & B’, m)  (B’’ & B’, m)

(true or B, m)  (true, m) (false or B, m)  (B,m) (B, m)  (B’’, m) ,
 (B or B’, m)  (B’’ or B’,m)

(not true, m)  (false, m) (not false, m)  (true, m) (B, m)  (B’, m) ,
 (not B, m)  (not B’, m)
 (E, m)  (E’’,m) (E, m)  (E’,m) , ~ a relation
(E ~ E’, m)  (E’’~E’,m) (V ~ E, m)  (V~E’,m)

(U ~ V, m)  true or false, depending on whether U ~ V holds or not

 Arithmetic Expressions:

 (E, m)  (E’’,m) (E, m)  (E’,m) ,
(E op E’, m)  (E’’ op E’,m) (V op E, m)  (V op E’,m)

(U op V, m)  (N,m) where N = U op V

Commands:

(skip, m)  m (E,m)  (E’,m) (I::=V,m)  m[I  V]
 (I::=E,m) --> (I::=E’,m)

 (C,m)  (C’’,m’) (C,m)  m’ ,
 (C;C’, m)  (C’’;C’,m’) (C;C’, m)  (C’,m’)

If Then Else Command:

(if true then C else C’ fi, m)  (C, m) (if false then C else C’ fi, m)  (C’, m)

 (B,m)  (B’,m) ,
(if B then C else C’ fi, m)  (if B’ then C else C’ fi, m)

While Command:

(while B do C od, m)  (if B then C; while B do C od else skip fi, m)

