
CS433 Midterm

Prof Josep Torrellas

October 19, 2017

Time: 1 hour + 15 minutes

Name:

Instructions:

1. This is a closed-book, closed-notes examination.

2. The Exam has 4 Questions. Please budget your time.

3. Calculators are allowed.

4. Please write your answers neatly. Good luck!

Problem No. Maxm Points Points Scored
1 30
2 30
3 30
4 30

Total 120

1

1. Pipelining. Control Hazards [30 points]

a. [3 points] List the 4 general ways of dealing with branch predic-
tion statically. Hint: one is freezing the pipeline.

[Answer]

Freezing pipeline

Always predict taken

Always predict nontaken

Delayed branches

b. [2 points] List one pro and one con of Delayed Branches.

[Answer]

Pro: Simple hardware (no need stall pipeline)

Pro: If can find a useful instruction, no cycle wasted

Con: If cannot find a useful instruction, waste a cycle

c. [2 points] Suppose we have a simple in-order processor like the
one in the book with a 1-delay slot for branches. Consider codes
(a) through (c):

ADD R1,R2,R3 ADD R1,R2,R3 ADD R1,R2,R3
NOP NOP NOP
BEQ R4 label BEQ R1 label BEQ R1 label
[[[
ADD R7,R7,R10 ADD R7,R7,R10 ADD R7,R9,R10
JMP end JMP end JMP end
NOP NOP NOP

label: ADD R7,R7,R12 label: ADD R7,R7,R12 label: ADD R7,R9,R12
end: end: end:

(a) (b) (c)

What is the best instruction to put in the delay slot in code (a)?
Explain why (in here and in subsequent questions, if no explana-
tion, then no points).

[Answer]

ADD R1,R2,R3 because it is a useful, independent instruction

2

d. [2 points] In the code above, what is the best instruction to put
in the delay slot in code (b)? Explain why.

[Answer]

Can only put NOP. Cannot put ADD R1,R2,R3 because it has a
data dependence with the branch. Cannot put any instruction from
the target or fall through path because, in case of misprediction,
would destroy a needed value.

e. [7 points] In the code above, what is the best instruction to put in
the delay slot in code (c) if R2+R3=0 60% of the time? Show the
resulting code. In this case: (i) what are the instructions executed
when R2+R3=0, and (ii) what are the instructions executed when
R2+R3!=0?

[Answer]

Put the first instruction from the target. Be careful that we need to
keep the label ”label”. Resulting code is on the left; code executed
when R2+R3=0 is in center; code executed when R2+R3!=0 is on
right.

ADD R1,R2,R3 ADD R1,R2,R3 ADD R1,R2,R3
NOP NOP NOP
BEQ R1 end BEQ R1 end BEQ R1 end
ADD R7,R9,R12 ADD R7,R9,R12 ADD R7,R9,R12
ADD R7,R9,R10 ADD R7,R9,R10
JMP end JMP end
NOP NOP

label: ADD R7,R9,R12
end:

3

f. [7 points] Repeat the whole previous question if R2+R3=0 40%
of the time.

[Answer]

ADD R1,R2,R3 ADD R1,R2,R3 ADD R1,R2,R3
NOP NOP NOP
BEQ R1 label BEQ R1 label BEQ R1 label
ADD R7,R9,R10 ADD R7,R9,R10 ADD R7,R9,R10
JMP end label: ADD R7,R9,R12 JMP end
NOP NOP

label: ADD R7,R9,R12
end:

g. [7 points] If R2+R3=0 50% of the time, which code do you prefer,
the one in question e or the one in question f? Why?

[Answer]

The one in question f because the one in question e replicates one
instruction.

4

2. Software ILP [30 points]
Consider an in-order single issue machine like the one considered in
class. There is 1 FP multiplier, taking 8 cycles to perform a multiply,
and 1 FP adder, taking 3 cycles to perform an addition. Both are
pipelined. Branches are resolved in the ID stage and there is 1 branch
delay slot. There is full forwarding, including forwarding from the end
of an EX to the MEM stage for stores. Now consider this code fragment:

loop L.D F0, 0(R1)
L.D F2, 8(R1)
MUL.D F6, F0, F0
ADD.D F4, F2, F0
ADD.D F6, F6, F4
S.D F6, 0(R2)
DADDUI R1, R1, #16
DADDUI R2, R2, #8
DSUBUI R3, R3, #1
BNEZ R3, loop

A. Extracting ILP

a. [12 points] Reschedule the code to minimize stalls. How many
stalls are there? Please show the resulting code and explain the
stalls.

[Answer]
There are 3 stalls.

loop L.D F0, 0(R1)
L.D F2, 8(R1)
MUL.D F6, F0, F0
ADD.D F4, F2, F0
DADDUI R1, R1, #16
DADDUI R2, R2, #8
DSUBUI R3, R3, #1
3 STALLS
ADD.D F6, F6, F4
BNEZ R3, loop
S.D F6, -8(R2)

5

b. [12 points] Unroll the loop and reschedule the instructions
to eliminate all stalls. Only unroll the *minimum* number of
times to remove all stalls. How many iterations were unrolled?
Explain.

[Answer]
16 cycles, 2 iterations

loop L.D F0, 0(R1)
L.D F8, 16(R1)
MUL.D F6, F0, F0
MUL.D F14, F8, F8
L.D F2, 8(R1)
L.D F10, 24(R1)
ADD.D F4, F2, F0
ADD.D F12, F10, F8
DSUBUI R3, R3, #2
DADDUI R1, R1, #32
ADD.D F6, F6, F4
ADD.D F14, F14, F12
DADDUI R2, R2, #16
S.D F6, -16(R2)
BNEZ R4, loop
S.D F14, -8(R2)

6

B. Short Answer [6 points]

a. [2 points] What are 2 disadvantages of loop unrolling?

[Answer]
Disadvantages: code size increases, register pressure increases

b. [4 points] What are 2 differences between dynamically sched-
uled superscalar and VLIW processors?

[Answer]
Superscalar - Issues multiple arbitrary instructions, instruc-
tions dynamically schedule.

VLIW - Issues a fixed number of different types of instructions,
instructions packaged together at compile time, if parallel in-
structions cannot be found, put NOP in its slot.

7

3. Branch Prediction [30 points]

A. Branch Prediction Schemes

Consider the following code with two branches, B1 and B2. R0
always contains 0, and R1 initially contains the memory address
of the first element of the array which is initialized to [0, 0, 1, 2,
3, 4, 5, 6, 7, 8]. Assume the memory is byte-addressable and the
size of integer is 4 bytes.

ADD R2 R0 R0
ADD R3 R0 R0

LOOP: ADD R4 R1 R2
LW R5 0(R4)
ANDI R5 R5 #1
BEQZ R5 EVEN <- B1
ADDI R3 R3 #1

EVEN: ADDI R2 R2 #4
SUBI R4 R2 #40
BNEQZ R4 LOOP <- B2

a. [4 points] Explain what the code does. Which values R2 and
R3 contain when exiting the loop (i.e., when B2 is not taken)?

[Answer] It counts the number of odd integers in the array.
R2 will be 40 and R3 will be the number of odd numbers in
the array.

8

b. [8 points] Assume that 2-bit saturating counters are used for
branch prediction. Complete the tables below and calculate
the prediction accuracy for B1 and B2.

B1:

Step State Prediction Actual Outcome

1 00 N T
2 01 N T
3 10 T N
4 01 N T
5 10 T N
6 01 N T
7 10 T N
8 01 N T
9 10 T N
10 01 N T

B2:

Step State Prediction Actual Outcome

1 00 N T
2 01 N T
3 10 T T
4 11 T T
5 11 T T
6 11 T T
7 11 T T
8 11 T T
9 11 T T
10 11 T N

B1 Prediction Accuracy: 0 / 10 = 0%
B2 Prediction Accuracy: 7 / 10 = 70%

9

c. [8 points] Assume the 2-bit prediction scheme explained in the
lecture, which needs two consecutive mispredictions to change
the prediction. Complete the tables below and calculate the
prediction accuracy for B1 and B2. In the tables, 00 means
strong-not-taken.

B1:

Step State Prediction Actual Outcome

1 00 N T
2 01 N T
3 11 T N
4 10 T T
5 11 T N
6 10 T T
7 11 T N
8 10 T T
9 11 T N
10 10 T T

B2:

Step State Prediction Actual Outcome

1 00 N T
2 01 N T
3 11 T T
4 11 T T
5 11 T T
6 11 T T
7 11 T T
8 11 T T
9 11 T T
10 11 T N

B1 Prediction Accuracy: 4 / 10 = 40%
B2 Prediction Accuracy: 7 / 10 = 70%

10

B. Branch Target Buffer

a. [10 points] Consider a branch target buffer for conditional
branches. Assume the followings:

– The BTB hit rate is 80%.

– The prediction accuracy for conditional branches in the
BTB is 75%.

– For conditional branches not in the BTB, the branch taken
frequency is 55%.

– A correctly predicted conditional branch has no penalty.

– If a conditional branch hits in the BTB but is provided a
wrong prediction, there is a penalty of two cycles.

– If a conditional branch misses in the BTB but is taken,
there is a penalty of three cycles.

What is the branch penalty in cycles?

[Answer]
Branch Penalty
= (Hit in BTB and Wrong Prediction) * 2
+ (Miss in BTB and Taken) * 3
= (80% * 25%) * 2 + (20% * 55%) * 3
= 0.4 + 0.33 = 0.73 cycles

11

4. Tomasulo Algorithm [30 points]

This problem concerns Tomasulo algorithm with dual issue and hard-
ware speculation. Assume the followings (which is similar to what we
had in the homework):

– There is one integer functional unit that takes 1 cycle, one FP
Add unit that takes 4 cycles, one FP Multiply unit that takes 5
cycles, and one FP Divide unit that takes 16 cycles.

– Functional units are not pipelined.

– Memory accesses use the integer functional unit to perform effec-
tive address calculation.

– Stores access memory during the CM stage while loads access
memory during the EX stage.

– Stores do not need the CDB or the WB stage.

– If an instruction moves to the WB stage in cycle x, then an in-
struction that is waiting for the same functional unit (due to a
structural hazard) can start execution in cycle x.

– An instruction waiting for data on the CDB can move to the EX
stage in the cycle after the CDB broadcast.

– Only one instruction can write to the CDB in one clock cycle.

– Whenever there is a conflict for a functional unit or the CDB,
assume that the oldest (by program order) of the conflicting in-
structions gets access, while others are stalled.

– The result from the integer functional unit is also broadcast on the
CDB and forwarded to dependent instructions through the CDB
(just like any floating point instruction).

– There are unlimited reorder buffer entries and reservation stations.

– Two instructions can commit per cycle.

– The BNEZ instruction uses the integer functional unit for its com-
parison and does not need the WB stage.

– Assume that an instruction after a branch cannot issue in the
same cycle as the branch; the earliest it can issue is in the cycle
immediately after the branch (to give time to access the branch
history table and/or buffer). Any other pair of instructions can
issue in the same cycle.

– There is one branch delay slot.

12

Complete the following table. For each instruction, fill in the cycle
numbers for each pipeline stage (CM stands for commit). Then in-
dicate where its source operands are read from (use RF for register
file, ROB for reorder buffer, and CDB for common data bus). You do
not have to fill entries marked with –. Some entries are filled in for you.

Instruction IS Operand 1 Operand 2 EX WB CM

L.D F0 0(R1) 1 RF RF 2 3 4
L.D F6 8(R1) 1 RF RF 3 4 5
DIV.D F2 F0 F6 2 CDB CDB 5-20 21 22
ADD.D F4 F2 F6 2 CDB CDB 22-25 26 27
MUL.D F8 F6 F4 3 CDB CDB 27-31 32 33
S.D F4 16(R1) 3 – RF 4 – 33
S.D F8 24(R1) 4 – RF 5 – 34
DADDUI R1 R1 -32 4 RF RF 6 7 34
BNEZ R1 target 5 CDB – 8 – 35
MUL.D F10 F2 F6 6 CDB RF 22-26 27 35

13

