
CS 433 Midterm Exam:  Mar 12, 2025
Professor Sarita Adve 

Time: 2 Hours 
 
Please print your Name and NetID and circle your course section below. 
 

Name: Instructor 

NetID:  

Section: S3 (Undergraduate) S4 (Graduate) 

Instructions 
1.​ Please write your Name and NetID on the top right corner of all pages in this exam. 

2.​ No books, papers, notes, or any other typed or written materials are allowed. No 
calculators or other electronic materials are allowed. 

3.​ Please do not turn in loose scrap paper. Limit your answers to the space provided if 
possible. If this is not possible, please write on the back of the same sheet. You may use 
the back of each sheet for scratch work. 

4.​ In all cases, show your work. No credit will be given if there is no indication of how the 
answer was derived. Partial credit will be given even if your final solution is incorrect, 
provided you show the intermediate steps in reaching the final solution. 

5.​ If you believe a problem is incorrectly or incompletely specified, make a reasonable 
assumption and solve the problem. The assumption should not result in a trivial solution. 
In all cases, clearly state any assumptions that you make in your answers. 

6.​ This exam has 6 problems and 14 pages (including this one). All students should solve 
problems 1 through 5. Only graduate students should solve problem 6. Please budget 
your time appropriately. Good luck! 
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Problem 1 [5 points] 

A program contains three non-overlapping regions that respectively constitute the following 
percentages of the total execution time of the program on a given machine: 

●​ Region A: 30% of the program execution time 
●​ Region B: 40% of the program execution time 
●​ Region C: 30% of the program execution time 

 

Part (A)  [3 points] 
An enhancement is proposed that speeds up region A by 3X, region B by 5X, and slows down 
region C by 2X (i.e., the execution time for region C doubles). Using the information provided, 
calculate the speedup for the entire program. You may express your answer in terms of an 
equation with all variables explicitly substituted. You are not required to perform numerical 
calculations. 
 
 
Solution: 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1
0.3
3 + 0.4

5 +(0.3×2)
= 1

0.1+0.08+0.6 = 1
0.78

 
Grading: 
3 points for setting up the speedup equation. -0.5 for each fraction/speedup value incorrectly 
substituted. 
 
 

 

Part (B)  [2 points] 
The enhancement from Part (A) is modified such that it provides infinite speedups for both 
Region A and Region B and is unchanged for Region C (i.e., slowdown from the original by 
2X). Calculate the speedup for the entire program. Again, you are not required to perform 
numerical calculations. 
 
Solution: 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1
0.3
∞ + 0.4

∞ +(0.3×2)
= 1

0+0+0.6 = 1
0.6

 
Grading: 
2 points for setting up the speedup equation. -0.5 for each fraction/speedup value incorrectly 
substituted. 
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Problem 2 [15 points] 

This problem concerns Tomasulo’s algorithm with dual-issue and hardware speculation. 
Consider the following architecture specification: 
 

Functional Unit Type Cycles in EX Number of Functional Units 

Integer 1 1 

FP Adder 3 1 

FP Divider 6 1 

 
1.​ Assume that you have unlimited reservation stations and reorder buffer entries. 

2.​ Functional units are not pipelined. 

3.​ Two instructions can commit each cycle.  

4.​ Loads use the integer functional unit to perform effective address calculation during the 
EX stage. They also access memory during the EX stage. Loads stay in EX for 1 cycle. 

5.​ If an instruction moves to its WB stage in cycle x, then an instruction that is waiting on 
the same functional unit (due to a structural hazard) can start executing in cycle x. 

6.​ An instruction waiting for data on the CDB can move to its EX stage in the cycle after the 
CDB broadcast. 

7.​ Only one instruction can write to the CDB in one clock cycle. Stores and branches do not 
need to write to the CDB (i.e., they skip the WB stage). 

8.​ Whenever there is a conflict for a resource like a functional unit or CDB (i.e., multiple 
instructions are ready to use the resource in the same cycle), assume that the oldest (by 
program order) of the conflicting instructions gets access, while others are stalled. 

9.​ Assume that the result from the integer functional unit is also broadcast on the CDB and 
forwarded to dependent instructions through the CDB (just like any floating point 
instruction). 

 
Based on the above specification, fill in the cycle numbers in each pipeline stage for each 
instruction in the following table (CM stands for the commit stage). If a stall occurs at any stage 
for an instruction, describe the reason for the stall in the last column. The reason should include 
the type of hazard; the register, functional unit, etc. that caused the dependence; and the 
instruction number (#) on which the given instruction is dependent. Additionally, note any stalls 
due to commit ordering.  
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# Instruction IS EX WB CM Reason for Stalls 

1   LD.D    F0, 0(R1) 1 2 3 4  

2   ADD.D  F0, F0, F3 1 4-6 7 8 RAW on F0 (from #1) 

3   DIV.D    F8, F0, F6 2 11-16 17 18 RAW on F0 (from #2) 
FP DIV occupied (by #6) 

4   LD.D    F6, 8(R1) 2 3 4 18 In-order commit 

5   ADD.D  F4, F6, F2 3 7-9 10 19 
RAW due to F6 (from #4) 
FP ADD occupied (by #2) 
In-order commit 

6   DIV.D   F4, F6, F2 3 5-10 11 19 RAW on F6 (from #4) 
In-order commit 

7   LD.D    F6, 16(R1) 4 5 6 20 In-order commit 

 
Grading: 
½ point for each entry (each stage for each instruction and reason for instruction are worth ½ 
point). 30 entries worth ½ point each = 15 points total. Cascading errors will not be penalized 
additionally as long as the relevant dependencies are still observed. 
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Problem 3 [12 points] 
Consider a loop that is entered several times within a program. The loop contains 4 branches: 
branch 1, 2, 3, 4, where branch 1 occurs before branch 2 which occurs before branch 3 which 
occurs before branch 4 in each iteration. Each time the loop is entered in the program, the loop 
performs 8 iterations, and each iteration executes all four branches with the following outcomes: 
 
 Iteration 
 1 2 3 4 5 6 7 8 

Branch 1 N T T N N T T N 
Branch 2 T T T T T N N N 
Branch 3 T N N T T T T N 
Branch 4 T T T T T T T N 

 
When Branch 4 is not taken at iteration 8, the program leaves the loop. 
 
Assume any other branches in the program (outside of the loop) do not affect local histories or 
prediction entries of any of the above branches, and every time the loop is entered (i.e., iteration 
1), the global branch history is all not-taken. Assume the predictor tables have infinite storage 
and the loop occurs enough times that the initial state of the predictors at the beginning of the 
program does not matter. 
 
For each of the three branches below, describe the predictor with the best (lowest) misprediction 
rate, explain why that predictor works well for the specific branch, and give the state of that 
predictor at the end of the 1000th invocation of the loop. When giving the state for a history based 
predictor, indicate which history a given prediction corresponds to. For example, for a (2, 1) 
history based predictor, the state can be represented as W/X/Y/Z, where each of W, X, Y, and Z 
is the prediction corresponding to a specific history pattern. 
 
Consider only local and global correlating predictors, saturating counters, and static predictions. 
History may not be longer than 2 branches, and counters may not be larger than 2 bits. For full 
credit, you should give the simplest predictor that achieves the same misprediction rate, where 
counter based predictors are considered simpler than history based and global history is simpler 
than local history. 
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Part (A) Branch 1 [4 points]: 
 
Solution: 
A local (2,1) predictor will predict every branch correctly. This works well because the decision 
of branch 1 is highly correlated with its previous results.  The predictor state is T/T/N/N, 
assuming the first entry is for history NN, the second is for history NT, third for history TN, and 
fourth for history TT. 
 
 
 
 
 
 
 

Part (B) Branch 2 [4 points]: 
 
Solution: 
A 1-bit counter makes 2 incorrect predictions per iteration. The branch has long runs of the same 
decision, and a 1-bit counter costs a minimal number of mispredicts when switching from taken 
to not taken. The final predictor state at the end of an iteration is 0 (not taken). 
 
 
 
 
 
 
 
 
 

Part (C) Branch 3 [4 points]: 
 
Solution: 
A global (2,1) predictor will predict every branch correctly. This works well because the decision 
is highly correlated with the decision of earlier branches in the same iteration. The predictor state 
is N/T/T/N (with the same correspondence to history bits as above). 
 
 
Grading: 
For each case, 2 points for the correct predictor and justification and 2 points for the correct 
state.  
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Problem 4 [14 points] 
Consider the following variation of the simple five stage pipeline (IF ID EX MEM WB) 
discussed in class: 

1.​ The MEM stage takes 4 cycles for each memory instruction, but is pipelined. For 
simplicity, assume that all other instructions spend one cycle in MEM like we discussed 
in class. 

2.​ All instructions take one cycle in the EX stage. Address calculation for memory 
instructions occurs in the EX stage. 

3.​ There is full forwarding and bypassing. 

4.​ For simplicity, ignore any structural hazards in the WB stage. If multiple instructions 
finish their MEM stages in the same cycle, then assume they can all proceed to the WB 
stage together (assuming there are no WAW hazards to be resolved). 

5.​ For simplicity, assume that instructions can proceed to the WB stage out of order 
(assuming other hazards are resolved). This is similar to the multicycle operations 
extension of the 5 stage pipeline we studied in the lecture relating to Appendix C. 

6.​ Branches are resolved in the decode stage as discussed in class, and have one branch 
delay slot. 

Consider the loop below. It calculates the sum of a set of values stored with an indirect 
representation. Instead of storing the values, the locations 0(R1), 4(R1), 8(R1), etc. contain the 
addresses of the values. This is similar to the memory access pattern of sparse matrix codes. The 
sum is accumulated in register F1. 
 
loop:​ LD​ ​ R3, 0(R1)​​ ​ // I1 

LD.D​​ F2, 0(R3)​​ ​ // I2 
ADD.D​ F1, F1, F2​ ​ // I3 
SUBI​​ R2, R2, #1​ ​ // I4 
BNEZ​​ R2, loop​ ​ ​ // I5 
ADDI​​ R1, R1, #4​ ​ // I6 
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Part A [3 points] 
List all the stalls incurred by the above loop (within a single iteration) and the reason for the 
stalls. If a dependence results in multiple stall cycles, indicate the number of cycles.  
 
Solution: 
1→2: 4 stall cycles due to RAW on R3. 
2→3: 4 stall cycles due to RAW on F2. 
4→5: 1 stall cycle due to RAW on R2 
 
Grading: 
1⁄2 point for identifying each stall. 1⁄2 point for the correct number of cycles. 3 points total. -½ 
point for any other stall wrongly identified. 
 
 
 
 
 

Part B [4 points] 
Software pipeline the loop to minimize the stalls. Assume infinite registers are available. Only 
the most efficient solution will fetch a perfect score. Only provide the steady state code. Do not 
worry about start-up and finish-up code. (Do not unroll the loop for this part.) 
 
 
Solution: 
 
loop:​ LD.D​​ F2, 0(R3)​​ // i-1 instruction 

LD​ ​ R3, 0(R1)​​ // i instruction 
SUBI​​ R2, R2, #1 
ADDI​​ R1, R1, #4​ // i instruction 
BNEZ​​ R2, loop 
ADD.D​ F1, F1, F2​ // i-1 instruction 

 
Grading: 
2 points if the solution appears to “spread out” the two loads and the add instruction enough 
(across two iterations) to eliminate the RAW stalls. -0.5 if stalls are not fully eliminated for each 
RAW hazard. 
1 point for resolving the branch stall by spacing the sub instruction and the branch. 
0.5 if the branch delay slot is filled with a suitable instruction.  
0.5 bonus point for a perfect solution. 
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Part C [5 points] 
Now consider the original code (without software pipelining) again. Consider unrolling the 
(original) loop. What is the minimum number of original iterations that you would need to 
include in the unrolled loop to minimize the stalls in the above code? Show the unrolled code. 
Assume you have infinite registers. 
 
Solution: 
 
Four iterations of the original loop are needed in each iteration of the new loop. 
 
loop:​ LD R3, 0(R1) 

LD R4, 4(R1) 
LD R5, 8(R1) 
LD R6, 12(R1) 
SUBI R2, R2, #4 
LD.D F2, 0(R3) 
LD.D F4, 0(R4) 
LD.D F6, 0(R5) 
LD.D F8, 0(R6) 
ADDI R1, R1, #16 
ADD.D F1, F1, F2 
ADD.D F1, F1, F4 
ADD.D F1, F1, F6 
BNEZ R2, loop 
ADD.D F1, F1, F8 

 
Grading: 
1 point for identifying the correct number of iterations. 
2 points for correct unrolling of the code for the identified number of iterations (correct 
immediate offsets, renamed registers, etc). Partial credit of 1 point if at least half of the unrolled 
address arithmetic and registers are correct. 
2 points for scheduling for minimal stalls for the identified number of iterations, including for the 
delay slot. Partial credit of 1 point if stalls are reduced but not eliminated. 
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Part D [1 point] 
What is the advantage of using software pipelining over loop unrolling for the above code? 
 
Solution: 
There are fewer static instructions in a software pipelined loop and so there is less pressure on 
the instruction cache. 
 
Grading: 
1 point for identifying fewer registers as the reason. 
 
 
 
 

Part E [1 point] 
What is the advantage of using loop unrolling over software pipelining for the above code? 
 
Solution: 
Loop overhead instructions such as branch and loop variable increment are reduced in the loop 
unrolling code, so fewer total dynamic instructions to execute. 
 
Grading: 
1 point for correct answer.  
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Problem 5 [4 points] 
Consider the following format for predicated (also known as guarded or conditional) MIPS 
instructions: 

(pT) ADD R1, R2, R3 
where the ADD instruction is predicated on the predicate register pT. Assume a set of 1‐bit 
predicate registers. 
 
Assume compare instructions that set a pair of predicate registers to complementary values: 

CMP.NE pT, pF = R8, R0 
The above compare sets the 1‐bit predicate registers, pT and pF, based on the "not equal" (NE) 
comparison relation as follows: 

pT = (R8 != R0) 
pF = !(R8!= R0) 

So, pT is true if R8 is not equal to R0, and pF is the complement of pT. 
 
For the following problem, you can assume the availability of any comparison relation with two 
operands; e.g., .LE for less than or equal to and .GT for greater than. 
 
Using the predicated instructions described above, eliminate all branches/jumps in the following 
code fragment (i.e., write the three basic blocks of the following code fragment as a single basic 
block). 
 

SUB ​R1, R13, R14 
BLT ​R1, R4, L1​  ​ // branch if R1 < R4 
ADDI R2, R2, #1 
ST ​ R2, 0(R7) 
J ​ L2 
 

L1: ​DIV.D F0, F0, F2 
ADD.D F0, F4, F2 
ST.D  F0, 0(R8) 
 

L2: ​... 
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Space to solve Problem 5 
 
 
Solution: 
The code fragment with predicated instructions is as below 
 

(1) SUB R1, R13, R14 
(2) CMP.LT pT, pF = R1, R4 
(3) (pF) ADDI R2, R2, #1 
(4) (pF) ST R2, 0(R7) 
(5) (pT) DIV.D F0, F0, F2 
(6) (pT) ADD.D F0, F4, F2 
(7) (pT) ST.D F0, 0(R8) 
 

L2:​ ... 
 
Grading: 

1/2 point for correctly translating each of the 8 instructions in the original code. (Note that for the 
jump instruction, J, the correct translation is to not have any instruction.  
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NOTE: ONLY GRADUATE STUDENTS SHOULD SOLVE PROBLEM 6. 

Problem 6 [6 points] 
You are a member of a team designing an out-of-order processor with dynamic scheduling and 
speculative execution. Your initial design was just reviewed by the circuit implementation team, 
and it turns out that you have some spare transistor budget! (A rare occurrence in practice.) 
 
Your processor currently has a small 2-bit saturating counter-based branch predictor which 
performs moderately well. It has 8 Integer Functional Units and 4 Floating Point Units (FPUs), 
256KB of on-chip caches, 4 reservation station entries shared among all the Integer Units, and 2 
reservation station entries shared among all the FPUs. The Reorder Buffer has 8 entries. The 
processor has a 25 stage pipeline. 
 
The application you are concerned about has a small code size and works on small data sets that 
fit in the processor cache. The application spends most of its time in loops where the iterations 
are independent of each other, but a given iteration has only a limited amount of ILP.  
 
You can use the extra transistors in (possibly several of) the following ways: 

1.​ Improve the branch predictor accuracy. 

2.​ Add more reservation station entries to your Tomasulo’s Algorithm-based Dynamic 
Scheduler. 

3.​ Add more FPUs and Integer Units. 

4.​ Add more Reorder Buffer entries. 

 
Some of these may be desirable additions, while others are unlikely to be very beneficial given 
the current configuration. There is a meeting coming up to discuss the proposed additions. Which 
of the above four additions should you support and which ones should you oppose (you can 
support/oppose multiple of these)? You need to justify your choices to receive credit. 
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Space to solve Problem 6 
 
Solution: 

1.​ Improve the branch predictor accuracy:​
This is a desirable addition. The problem states that the branch predictor performs only 
moderately well and the processor has a long pipeline making branch mispredictions 
expensive. Thus, improving branch prediction accuracy is quite likely to increase 
performance. 

2.​ Add more reservation station entries to your Tomasulo’s Algorithm-based Dynamic 
Scheduler:​
This is a desirable addition. More reservation stations would mean a larger window 
within which the processor can search for ready instructions to execute, thus it can 
discover more parallelism and keep execution units busy. The initial design had fewer 
reservation station entries than available functional units. More reservation station entries 
will allow all functional units to be better utilized. This would lead to better performance, 
especially since our application needs to discover parallelism across loop iterations. 

3.​ Add more FPUs and Integer Units:​
This doesn’t seem to be a good addition. The current machine already has enough FUs. 
Instead, we should devote extra transistors to first improve other aspects that enable the 
processor to discover enough parallelism in the instruction stream to keep the available 
FUs busy. 

4.​ Add more Reorder Buffer entries:​
This is a desirable addition. The current configuration has very few ROB entries relative 
to the number of FUs available. A large ROB helps to mask out the effects of long 
latency instructions and help search for parallelism within a larger window to utilize the 
FUs better (this goes together with (2)). 

 
Grading: 
1.5 points for correctly analyzing each part. 6 points total. Give partial credit (1 point) if the 
student gives a valid reason for an opposing viewpoint.  
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