
CS 433 Final Exam Practice 
Professor Sarita Adve 

Time: 3 Hours 

Please print your Name and NetID and circle your course section below. 

Name:  

NetID:  

Section: T3 (Undergraduate) T4 (Graduate) 

 

Instructions 
1.​ No books, papers, notes, or any other typed or written materials are allowed. No calculators or 

other electronic materials are allowed. 

2.​ Please do not turn in loose scrap paper. Limit your answers to the space provided if possible. If 
this is not possible, please write on the back of the same sheet. You may use the back of each 
sheet for scratch work. 

3.​ In all cases, show your work. No credit will be given if there is no indication of how the answer 
was derived. Partial credit will be given even if your final solution is incorrect, provided you 
show the intermediate steps in reaching the final solution. 

4.​ If you believe a problem is incorrectly or incompletely specified, make a reasonable assumption 
and solve the problem. The assumption should not result in a trivial solution. In all cases, clearly 
state any assumptions that you make in your answers. 

5.​ This exam has 6 problems and 16 pages (including this one). All students should solve 
problems 1, 2A-E, 3 through 6. Only graduate students should solve problem 2F-G. Please 
budget your time appropriately. Good luck! 

 

Problem 1 2 3 4 
​
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Points T3 
T4 

13 
13 

15 
21 

14 
14 

6 
6 

8 
8 

5 
5 

61 (undergrads)  
67 (graduates) 

Score        
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Problem 1 [13 points] 
Consider a virtual memory system with the following parameters. 

●​ 64-bit virtual addresses 
●​ 48-bit physical addresses 
●​ 4KiB (i.e., 4 * 1024 B) pages 
●​ 16B cache blocks 
●​ Byte-addressing 

Furthermore, main memory is interleaved on a word (32-bit) basis with four banks and a new bank access 
can be started every cycle. It takes 10 processor clock cycles to send an address from the processor to 
main memory; 50 cycles for memory to access a word; and 20 cycles to send one word of data back from 
memory to the processor. The memory bus width is 1 word. 

 

Part A [3 points] 

How many bits are needed for the page offset, virtual page number, and physical page number? 

 

 

 

 

 

 

 

Part B [4 points] 

What is the minimum size of a page table entry? Ignore bits to guide the replacement policy, but ensure 
you account for all other necessary bits. Assume a valid page can have every combination of read, write, 
and execute permissions. Any extraneous bits mentioned will fetch negative points. 
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Part C [2 points] 

What is the minimum size of an entry in a fully-associative TLB? Again, ignore bits for the replacement 
policy. Any extraneous bits mentioned will fetch negative points. 

 

 

 

 

 

 

 

Part D [2 points] 

If the processor did not have a TLB, how long would each address translation take? Assume that the 
complete page table resides in main memory and there are no page faults. 

 

 

 

 

 

 

 

Part E [2 points] 

Now assume that the processor has a fully-associative TLB with a hit rate of 97% and a hit time of 1 
cycle. How long do address translations take now, on average? What is the speedup over the system 
without a TLB? Again, assume that all pages reside in memory and there are no page faults. 
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Problem 2 [15 points for undergraduates, 21 points for graduates] 
ALL STUDENTS SHOULD SOLVE PARTS A TO E. ONLY GRADUATE 
STUDENTS SHOULD SOLVE PARTS F AND G. 

Data cache performance can be improved if a processor loads data into the cache before the program 
requests it. This prefetching requires predicting which data will soon be accessed. A simple strategy only 
prefetches on a cache miss, and loads the requested block as well as the following block. Consider the 
effect of this strategy on the memory accesses of the following programs, under the following 
assumptions: 

●​ The cache block size is 16 bytes 
●​ Array entries are 4 bytes 
●​ Arrays are aligned so the first element is at the start of a cache block 
●​ The cache is initially empty 
●​ Local variables are stored in registers, not memory 
●​ The cache is sufficiently large that there will be no capacity misses 
●​ The cache is sufficiently large/associative that there will be no conflict misses 
●​ If a processor issues a load to an address that was previously prefetched, assume the prefetch 

already returned the block in the cache and the load will be a hit. 

For each program, give the number of data cache misses that will occur with and without next-line 
prefetching, and how much data will be loaded into the cache with and without next-line prefetching. 
 

Part A [3 points] 

for (int i = 0; i < 128; ++i) { 
    a[i] = sin(a[i]); 
} 
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Part B [3 points] 
 
for (int i = 127; i >= 0; --i) { 

a[i] = sin(a[i]); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
Part C [3 points] 
 
for (int i = 0; i < 128; ++i) { 

a[4*i]= sin(a[4*i]); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
Part D [3 points] 
 
for (int i = 0; i < 128; ++i) { 

a[8*i] = sin(a[8*i]); 
} 
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Part E [3 points] 
 
Now consider software prefetching for the code in part D. Make the following additional 
assumptions: 
 

●​ Statements in the code are executed sequentially. The loop test takes 4 cycles per invocation. The 
assignment statement takes 20 cycles if there is no cache miss (those 20 cycles include 
multiplication to find the index, the load, the sin computation, and the store), and an additional 40 
cycles if there is a data cache miss. 

●​ There is a data prefetch instruction with the format prefetch(array[index]). This prefetches the 
single block containing the word array[index] into the data cache. It takes 1 cycle for the 
processor to execute this instruction and send it to the data cache. The processor can then go 
ahead and execute subsequent instructions. If the data to be prefetched is not already in the cache, 
then it takes 35 cycles for the data to get loaded into the cache. 

●​ Assume the memory system can handle an infinite number of concurrent prefetches; e.g., the 
cache has infinite MSHRs. 

●​ The instruction cache is perfect; i.e., the hit rate is 100% and it can be ignored for this problem. 
 
Modify the code in part D to use software prefetching. Do not add startup or cleanup code. Given that 
restriction, avoid as many cache misses as possible. Additionally, write code that issues as few prefetches 
as possible, given the number of misses remaining. As always, be sure to explain your answer. 
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Part F [3 points] – ONLY GRADUATE STUDENTS SHOULD SOLVE THIS PROBLEM 
 
Describe the design for a hardware prefetcher that can handle all the cases from parts A – D. Your 
prefetcher must minimize both the number of misses and the amount of useless data that is prefetched. 
Assume the prefetcher is invoked only on loads. You have to explain the design only at a conceptual level 
(e.g., analogous to the level at which we explained branch predictors in the lecture); i.e., you do not need 
to show the actual circuitry. 
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Part G [3 points] – ONLY GRADUATE STUDENTS SHOULD SOLVE THIS PROBLEM 
 
Now assume that the loops in parts A to D are modified so that they additionally traverse (with some 
constant stride) an array that is disjoint from array “a.” Does your prefetcher design for part F still work 
as well? If yes, explain why. If not, explain how you will modify it to make it work efficiently for the new 
loops. Credit will be given for this part only if a reasonable solution is provided for part F. 
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Problem 3 [14 points] 
 

This question concerns a snooping update (as opposed to invalidate) cache coherence protocol. Consider a 
system where the processors are connected by a bus and cache coherence is maintained through a 
snooping update protocol. In such a protocol, when a cache modifies its data, it broadcasts the updated 
data on a bus using a bus update transaction, if necessary. Memory and all caches that have a copy of that 
data then update their own copies. This is in contrast to the invalidation protocol discussed in class where 
a cache invalidates its copy in response to another processor’s write request to a block. 

Our update protocol has three states – CE, CS and DE: 

●​ CE (Clean Exclusive): The block is present only in this cache (exclusively) and memory also has 
the same (clean) copy. 

●​ CS (Clean Shared): The block is present in several caches (shared) and memory and all those 
caches have the same (clean) copy. 

●​ DE (Dirty Exclusive): The block is present only in this cache (exclusively) and the data in the 
cache is updated or dirty (i.e., a more recent version than the copy in memory). 

 

All caches are write-allocate. A write-back policy is used if the line is in DE or CE state. For a line in CS 
state or a line not present in the cache, a write-through policy is used. The bus has a special line called 
Shared Line (SL) whose state is usually 0. When cache i performs a bus transaction for a specific cache 
line, all the caches that have the same line pull up the Shared Line (SL) to 1. If no other cache has the 
line, the Shared Line (SL) remains at 0. When cache i performs a bus transaction, it uses the state of the 
Shared Line (SL) to determine whether to change to an exclusive state or the shared state. 

Assume that if a request is made to a block for which memory has a clean copy, memory will service that 
request. If the memory does not have a clean copy, the cache with the updated block will service the 
request and memory will also get updated. 

For the question below, consider the following bus transactions: 

●​ BR: Bus Read – Request to get the cache line (on a cache miss). 
●​ BU: Bus update – Request to update copies of the cache line in memory and other caches with the 

new value of a word in the block. 
●​ BRU: Bus read and update – A combination of BR and BU. 

Note: you are not required to consider Bus Writeback, which may take place on a replacement. 
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Part A [8 points] 

Fill out the following state transition table for the processor i performing a memory instruction. Show the 
next state for a block in the cache of processor i and any bus transaction performed by processor i. Each 
entry should be filled out as: 

Next State/Bus Transaction (e.g. CS/BR), where 

Next State = CS, CE, DE or NIC (Not in Cache; i.e., a cache miss) 

Bus Transaction = BR, BU, BRU, or NT (No transaction) 

Note: If an entry is not possible (i.e., the system cannot be in such a state) write “Not Possible” in that 
entry. 

 

 SL is 0 if proc i does a bus transaction SL is 1 if proc i does a bus transaction 

Current State in 
processor i 

Read by proc i Write by proc i Read by proc i Write by proc i 

CE  
 
 

 
 
 

  

CS  
 

 
 
 

  

DE  
 
 

   

NIC  
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Part B [6 points] 

Fill out the following state transition table for the cache of processor i. Show the next state for a block in 
the cache of processor i and any action(s) taken by the cache when a bus transaction is initiated by another 
processor j. Each entry should be filled as: 

Next State/Action (e.g. CS/UPDL) 
Where 

Next State = CS, CE, DE or NIC (Not in Cache) 
Action = PULLSL1: Pull SL to 1 

  UPDL: Update block in cache i (i.e., one’s own cache) 
  PROVL: Provide block in response to BR or BRU (main memory is also updated) 
  NA: No Action 

Note: If an entry is not possible (i.e., the system cannot be in such a state) write “Not Possible” in that 
entry. 

 

State in proc i BR by proc j BU by proc j BRU by proc j 

CE  
 
 
 

  

CS  
 
 
 

  

DE  
 
 
 

  

NIC NIC/NA 
 
 

NIC/NA NIC/NA 
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Problem 4 [6 points] 
 

You are to implement a simple counting semaphore using test_and_set. Each semaphore contains an 
integer value. You must write two functions, each of which must perform atomically: 

●​ sem_post: increment the value 
●​ sem_wait: wait for the value to be positive, then decrement the value 

For test_and_set, use the following prototype to atomically set lock_var to 1 and return its 
previous value: int test_and_set (Lock lock_var); 

Add C-like pseudocode to the stub below. Ignore initialization. Assume sequential consistency. 

 

typedef struct { 

int value; 

Lock lock_var; 

} sem_t; 

 

sem_post (sem_t *s) 

{  

   ​  //  your code below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 

// (problem continues on the next page) 
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// (repeated struct from prior page for convenience) 

// typedef struct { 

//​ int value; 

//​ Lock lock_var; 

// } sem_t; 

 

sem_wait (sem_t *s) 

{   

// your code below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 
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Problem 5 [8 points] 
Consider the following system S: 

●​ The system S contains a cache per processor that can contain shared read/write data. Cache 
coherence is maintained through an invalidation snooping protocol. 

●​ When a processor’s cache controller sees an invalidate on the bus for a line present in its cache, it 
buffers this invalidate in a local buffer. The bus is free for the next transaction as soon as such 
buffering is done. The cache controller will apply the invalidate to its cache line some time later 
(e.g., when the cache is not being used by the processor). It is also possible that the buffered 
invalidates are applied to a cache in an order different from the order in which they were received 
from the bus. 

●​ A processor is allowed to have multiple outstanding memory accesses and these accesses could 
occur out of program order. 

●​ An instruction called memory_barrier, denoted by MB, is provided with the following 
specification. 

●​ An MB by processor P is not issued until the following is true of all operations op of processor P 
that are before MB by program order: 

○​ if op is a read, then it has returned its value, and 
○​ if op is a write, then the invalidate for that write has been applied to all the cache lines 

with an older value. 
●​ Further, processor P does not issue any memory operation until all preceding MB instructions (by 

program order) have been issued. 
 
The memory consistency model of system S is not sequential consistency and does not impose any 
constraints on the ordering of loads and stores other than that due to the MB instruction. 
Answer the following two parts for the above system. 
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Part A [4 points] 
 
Consider the following program. (Note: Operations in a vertical column are issued by the same processor, 
and appear in program order.) 
 
Initially X = Y = 0 
 
P1​ ​ P2​ ​ P3 
X = 1​ ​ tmp1 = X​ tmp2 = Y 
​ ​ Y = 1​ ​ tmp3 = X 
 
Suppose processor P2’s read of X and processor P3’s read of Y both return the value 1. Then what values 
could processor P3’s read of X return on a sequentially consistent system? What values could it return on 
system S? 
 
 
 
 
 
 
 
 
 
 
 
 
Part B [4 points] 
 
The designers of system S claim that S is simple to program because programmers who want sequential 
consistency can simply put MB instructions before and after every memory operation to get sequential 
consistency. Is the italicized statement true? If not, why not and how would you modify system S to make 
the statement true? 
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Problem 6 [5 points] 
This question concerns the mini-project presentations in class. Circle the most appropriate choices for 
each question below. Some questions have multiple correct choices. Points will be given for a question 
only if all appropriate choices for that question are circled and no incorrect choice is circled. You only 
need to answer five of the six questions correctly for full credit (if you answer all six, we will give full 
credit if five are correct). 

Part A 
What is true about AMD’s recent Zen processors? 

a)​ They use the RISC V ISA to achieve much higher IPC than previous AMD processors. 
b)​ There are several features for better security. 
c)​ The L1 data cache uses a linear address utag/way-predictor.  
d)​ There are no bank conflicts anywhere in the memory hierarchy.  

Part B 
What is true about the Fujitsu A64FX? 

a)​ It targets low cost smartphones. 
b)​ It supports a Torus interconnect. 
c)​ All memory resides on the processor chip die for fast access. 
d)​ It uses an Arm ISA. 

Part C 
What is true about the Google TPU? 

a)​ There are several generations of the TPU.  
b)​ Newer generations avoid the expensive High Bandwidth Memory (HBM) used by GPUs. 
c)​ The design employs concepts from systolic array architectures. 
d)​ It is designed primarily for Neural Networks. 

Part D 
What is true about the IBM Power 9? 

a)​ It employs a hardware cache coherence protocol. 
b)​ It supports several on-chip and off-chip accelerators. 
c)​ It is a single-issue in-order processor. 
d)​ All of the above. 

Part E 
What is true about the Intel Alder Lake architecture? 

a)​ It supports Advanced Vector Extension instructions (AVX). 
b)​ The processor has two types of cores. 
c)​ It is targeted specifically for supercomputers. 
d)​ It includes a thread director for the purpose of avoiding deadlocks in the coherence protocol. 

Part F 
What is true about the Nvidia Ampere GA102 GPU? 

a)​ The license agreement forbids its use for crypto currency mining. 
b)​ It supports a hardware ray tracing engine. 
c)​ It supports tensor cores for tensor processing. 
d)​ None of the above. 
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