
CS 433 Midterm Exam Practice 
Professor  Sarita Adve

Time: 2 Hours 
Please print your Name and NetID and circle your course section below. 

Name:  

NetID:  

Section: T3 (Undergraduate) T4 (Graduate) 

Instructions 

1.​ No books, papers, notes, or any other typed or written materials are allowed. No calculators or 
other electronic materials are allowed. 

2.​ Please do not turn in loose scrap paper. Limit your answers to the space provided if possible. If 
this is not possible, please write on the back of the same sheet. You may use the back of each 
sheet for scratch work. 

3.​ In all cases, show your work. No credit will be given if there is no indication of how the answer 
was derived. Partial credit will be given even if your final solution is incorrect, provided you 
show the intermediate steps in reaching the final solution. 

4.​ If you believe a problem is incorrectly or incompletely specified, make a reasonable assumption 
and solve the problem. The assumption should not result in a trivial solution. In all cases, clearly 
state any assumptions that you make in your answers. 

5.​ This exam has 5 problems and 13 pages (including this one). All students should solve 
problems 1, 2A, and 3 through 5. Only graduate students should solve problem 2B and 2C. 
Please budget your time appropriately. Good luck! 

 

Problem 1 2 3 4 
​
5 Total 

Points T3 
            T4 

4 
4 

16 
26 

9 
9 

18 
18 

9 
9 

56 (undergrads)  
66 (graduates) 

Score       
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Problem 1 [4 points] 
 
Assume 90% of a sequential program’s execution time can be parallelized.  

Part A [2 points] 

What speedup (from parallelism) is required on the parallelizable section to achieve an overall speedup of 
4X for the full program? You may express your answer in terms of an equation with all variables 
explicitly substituted. You are not required to perform numerical calculations. 

 

 

 

 

 

 

 

 

Part B [2 points] 

What is the maximum possible speedup achievable on the above program through parallelization? 
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Problem 2 [16 points for undergraduates, 26 points for graduates] 
 
This problem concerns Tomasulo’s algorithm. Consider running the following loop on an architecture 
specified below. 
 
1. ​ LP: ​ L.D​ ​ F0, 0(R1) 
2.​ ​ ADD.D​ F0, F0, F6 
3.​ ​ DIV.D​ F2, F2, F0 
4.​ ​ L.D​ ​ F0, 8(R1) 
5.​ ​ DIV.D​ F4, F0, F8 
6.​ ​ S.D ​ ​ F4, 16(R1) 
7.​ ​ DADDI​ R1, R1, #-24 
8.​ ​ BNEZ​ R1, LP 
 
 
Functional Unit Type Cycles in EX Number of Functional Units 

Integer 1 1 
FP Adder 5 1 
FP Divider 15 1 
 
1) Assume that you have unlimited reservation stations.  
2) Memory accesses use the integer functional unit to perform effective address calculation during the EX 
stage. For stores, memory is accessed during the EX stage (Tomasulo’s algorithm without speculation) or 
commit stage (Tomasulo’s algorithm with speculation). All loads access memory during the EX stage. 
Loads and Stores stay in EX for 1 cycle.  
3) Functional units are not pipelined.  
4) If an instruction moves to its WB stage in cycle x, then an instruction that is waiting on the same 
functional unit (due to a structural hazard) can start executing in cycle x.  
5) An instruction waiting for data on the CDB can move to its EX stage in the cycle after the CDB 
broadcast.  
6) Only one instruction can write to the CDB in one clock cycle. Branches and stores do not need the 
CDB.  
7) Whenever there is a conflict for a functional unit or the CDB, assume that the oldest (by program 
order) of the conflicting instructions gets access, while others are stalled.  
8) Assume that the result from the integer functional unit is also broadcast on the CDB and forwarded to 
dependent instructions through the CDB (just like any floating point instruction). 
9) Assume that the BNEZ occupies the integer functional unit for its computation and spends one cycle in 
EX. 
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Part A [16 points] 
 
Complete the following table using Tomasulo’s algorithm but without assuming any hardware speculation 
on branches. That is, an instruction after a branch cannot issue until the cycle after the branch completes 
its EX. Assume a single-issue machine. Fill in the cycle numbers in each pipeline stage for the first 
several instructions of the loop as given below, assuming the branch is always taken. The entries for the 
first instruction are filled in for you. Explain the reasons for any stalls. 
 

Instruction IS EX WB Reason for Stalls 

Iteration 1     

1.   L.D         F0, 0(R1) 1 2 3  

2.   ADD.D​ F0, F0, F6 

 

    

3.   DIV.D​ F2, F2, F0 

 

    

4.   L.D         F0, 8(R1) 

 

    

5.   DIV.D​ F4, F0, F8 

 

    

6.   S.D         F4, 16(R1) 

 

    

7.   DADDI​ R1, R1, #-24 

 

    

8.   BNEZ​ R1, LP 

 

    

Iteration 2     

9.   L.D​ F0, 0(R1) 
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ONLY GRADUATE STUDENTS SHOULD SOLVE THE FOLLOWING PARTS B and C FOR 
PROBLEM 2.  
 
Part B [4 points] 
 
To improve the performance of the above loop execution, you are tasked with adding support for 
speculative execution. However, instead of using a reorder buffer (ROB) to store uncommitted 
(potentially speculative) values, your colleague proposes to build on the concept of renaming 
used in Tomasulo’s algorithm and leverage the available large set of physical registers. The idea 
is to hold potentially speculative, uncommitted values that usually reside in the ROB in an 
extended set of physical registers. During instruction issue, a renaming process maps the names 
of the logical (i.e., architectural) registers (R0 to R31, F0 to F31) to this extended physical 
register set (P0 to P255), allocating a new unused register for the destination from a queue of free 
P-registers. 
 
Using this idea, work out the register renaming necessary to enable the speculative execution of 
(part of) the second loop iteration in the table below. Assume that at the time the sequence in the 
table begins, registers R0 to R31 are mapped to P0 to P31 respectively and registers F0 to F31 
are mapped to P32 to P63 respectively. Assume P64 to P255 are all on the free list and allocation 
of free registers is done in order from P64 to P255 (the lowest numbered one first), followed by 
any others that may be freed up in the execution below. 
 

Instruction Instruction with renamed registers Changes to the rename map 

BNEZ      R1, LP BNEZ      P1, LP  

Iteration 2   

L.D​       F0, 0(R1) L.D          P64, 0(P1) F0 → P64 

ADD.D    F0, F0, F6  

 

 

DIV.D      F2, F2, F0  

 

 

L.D          F0, 8(R1)  

 

 

DIV.D      F4, F0, F8  
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ONLY GRADUATE STUDENTS SHOULD SOLVE THE FOLLOWING PART  C FOR 
PROBLEM 2.   
 
Part C [6 points] 
 
Suppose that the first load instruction - L.D F0, 0(R1) - in the second loop iteration raises an 
exception. Assume the exception is raised after all the instructions in the table have arrived in the reorder 
buffer. Also assume the hardware provides precise exceptions. 
 
When should the above exception be handled? For precise exceptions, the instructions after the load must 
be squashed before the exception is handled. Explain what steps the hardware needs to take to restore the 
correct architectural state after these instructions are squashed. If there is any additional information that 
the hardware needs to track to enable this, state the information clearly. Illustrate your answer by applying 
it to at least one of the squashed instructions.  
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Problem 3 [9 points] 
 
Consider the following piece of code:  

       DADDI  R1,  R0, #100 
L1:  DADDI  R1,  R1, #-1 
       BEQZ   R1, END       -- Branch 1 
       DADDI  R12, R0, #2   
L2:  DADDI  R12, R12, #-1   
       BNEZ   R12, L2       -- Branch 2 
        J ​   L1 
END: … 
 
Assume R0 stores 0.  Branch 1 is executed 100 times and branch 2 is executed a total of 198 times.  For 
each branch, how many correct predictions will occur if we use the following prediction schemes?  
Assume at the beginning of execution, the last branch was not taken.  Please explain your answers.  

Part A [3 points]: 1-bit predictor initialized to T (taken) 

 

 

 

 

 

 

 

 

Part B [3 points]: 2-bit saturating counter predictor initialized to 10 (taken)  
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Part C [3 points]: (1,1) global correlating predictor, initialized to T/T. The code and assumptions from 
the previous page are repeated below for your convenience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The code and assumptions for Problem 3 are repeated below from the previous page for your 
convenience. 

       DADDI  R1,  R0, #100 
L1:  DADDI  R1,  R1, #-1 
       BEQZ   R1, END       -- Branch 1 
       DADDI  R12, R0, #2   
L2:  DADDI  R12, R12, #-1   
       BNEZ   R12, L2       -- Branch 2 
        J ​   L1 
END: … 
 
Assume R0 stores 0.  Branch 1 is executed 100 times and branch 2 is executed a total of 198 times. 
Assume at the beginning of execution, the last branch was not taken.   
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Problem 4 [18 points] 
 
Consider the following code fragment: 
 
Loop:​ LD.D​  ​ F1, 0(R1) 

LD.D ​  ​ F2, 0(R2) 
MUL.D ​ F3, F1, F10 
ADD.D ​ F4, F3, F2 
SD.D ​  ​ F4, 0(R1) 
DADDUI ​ R1, R1, #8 
DADDUI ​ R2, R2, #8 
BNEZ​  ​ R1, R3, Loop 

Consider a pipeline with the following latencies: 3 cycles between an FP multiply and its 
consumer, 1 cycle between an FP add and its consumer, and 0 cycles between all other pairs. 
Thus, there should be three stall cycles between the multiply and addition in the above code for 
correct operation. Assume that all functional units are pipelined. Assume the machine does NOT 
support delayed branches. 

Unroll the above loop 4 times and write the resulting code to the left of the table on the next page 
(the above loop is repeated on the next page for your convenience). You have access to 
temporary registers T0…T63. Assume that the total number of iterations for the original loop is a 
multiple of 4. Schedule the unrolled loop for best performance on a VLIW machine where each 
VLIW instruction can contain one memory reference, one FP operation, and one integer 
operation. Write the scheduled instructions in the table on the next page to minimize the number 
of stalls. You may use L for L.D, M for MUL.D, etc. 
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Loop:​ LD.D​  F1, 0(R1) 
LD.D ​  F2, 0(R2) 
MUL.D F3, F1, F10 
ADD.D F4, F3, F2 
SD.D ​  F4, 0(R1) 
DADDUI R1, R1, #8 
DADDUI R2, R2, #8 
BNEZ​  R1, R3, Loop 

 
Please write the unrolled loop below 
 

Mem FP ALU Integer ALU 

 
 

  

 
 

​  
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Problem 5 [9 points] 
 
Consider the following code fragment from an if-then-else statement of the form  
 

if (A == 0) A = B;  
else A = A  + 4; 

 
where A is at 0(R3) and B is at 0(R2): 
 
1.​ ​ LD ​ ​ R1, 0(R3) ​ ; load A 
2.​  ​ BNEZ​ ​ R1, L1​​ ; test A 
3.​ ​ LD ​ ​ R1, 0(R2)​ ; then clause 
4.​ ​ J​ ​ L2​ ​ ; skip else 
5.​ L1:​ DADDI​ R1, R1, #4​ ; else clause 
6.​ L2: ​ SD​ ​ R1, 0(R3)​ ; store A 
 
The machine on which the code will run does not have hardware speculation but does support 
compiler speculation where speculative instructions are marked with a speculation bit and poison 
bits are provided to deal with exceptions on speculative instructions. You are told that if two 
loads appear one after another in program order and happen to miss in the cache, then the 
machine can pipeline them in the memory system with significant performance boost. (We will 
learn about this type of load optimization soon in class. It is not necessary to know how it works 
to solve this problem.) 
 
Given the above, you modify the above code as below to exploit compiler speculation and move 
the two loads next to each other for a possible performance boost. The second load is speculative 
(denoted by (s)). 
 

LD​ ​ R1, 0(R3)​ ; load A 
​ (s)LD​ ​ R14, 0(R2)​ ; speculative load B 
​ BEQZ​ ​ R1, L3​​ ; other branch of the if 
​ DADDI​ R14, R1, #4​ ; else clause 
L3:​ SD ​ ​ R14, 0(R3)​ ; store A 
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Part A [4 points] 
 
Assume A = 0 at the beginning of the execution and that the speculative load above incurs an 
exception. Fill the following table for the execution of your modified code above, showing the 
instructions executed (in program order), the speculative bit for the instruction (0 or 1), and the 
state of the poison bits for the different registers after the instruction is executed (0 or 1). State if 
and when (i.e., at which instruction) the exception incurred by the speculative load is handled 
and why. The first entry is filled for you. 
 

 
Instruction 

 
Speculative bit 

Poison bits 

R1 R2 R3 R14 

LD R1, 0(R3) 
 

0 0 0 0 0 
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Part B [5 points] 
 
Now assume that A!=0 at the start of the execution of your modified code and redo the following 
table with all of the other assumptions and instructions of Part A: 
 

 
Instruction 

 
Speculative bit 

Poison bits 

R1 R2 R3 R14 

LD R1, 0(R3) 
 

0 0 0 0 0 
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