ECE408/CS483 Practice Exam #1, Fall 2012

You are allowed to use any notes, books, papers, and other reference
material as you desire. No electronic assistance other than a calculator is
permitted. No interactions with humans other than course staff are
allowed.

This exam is designed to take 150 minutes to complete. To allow for any
unforeseen difficulties, you are also allowed a 60-minute automatic
extension.

This exam is based on lectures as well as lab MPs/projects.

The questions are randomly selected from the topics we covered this
semester.

You can write down the reasoning behind your answers for possible
partial credit.

Good luck!

Question 1 (50 points): Short Answer

Answer each of the following questions in as few words as you can. Your answer will be
graded based on completeness, correctness, and conciseness.

(7 points) Give two reasons for adding extra "padding"” elements to arrays allocated in GPU
global memory?

Answers:
1) To achieve coalesced global memory operations by ensuring all accesses in a Warp
always form good coalescing groups (aligned to 64B boundaries)..
2) To eliminate code complexity and branch divergence handling cases when the
thread blocks don't evenly divide into the size of the dataset.

2. (7 points) Give two potential disadvantages associated with increasing the amount of work
done in each CUDA thread, such as loop unrolling techniques, using fewer threads in total?

Answers:

1) With more resource usage in each enlarged thread block, the number of thread
blocks that can be simultaneously executed by each SM can decrease, potentially
reducing the total number of resident threads in each SM.

2) Fewer thread blocks per kernel invocation, may reduce the ability of the algorithm
to scale to future GPUs

3) The decrease in total thread blocks results in a higher penalty for cases where the
number of SMs doesn't evenly divide into the number of thread blocks as the last
group of thread blocks completes their work (load imbalance penalty).

3. (8 points) The following CUDA code is intended to perform a sum of all elements of the
partialSumarray. First, provide the missing operation, and second estimate the fraction of
the iterations of the £or loop that will have branch divergence.

__shared float partialSum[];
unsigned int tid = threadIdx.x;

for (unsigned int stride = blockDim.x;
stride > O;
stride = stride >> 1)

;; missing operation

if (tid < stride)
partialSum[tid] += partialSum[tid+stride];

Answer: Yes, when stride is less than 32. The loop will iterate 9 times. The last 5
times will have branch divergence. 5/9 of the iterations will have branch divergence.
(There can only be up to 512 threads in a block, thus stride cannot be more than 512 in
this code.)

4. (7 points) For the following code, estimate the average run time in cycles of a thread.
Assume for simplicity that the __sin () function operates on radians, and that all operations
including the __sin () take 1 cycle.

if (__sin((float) threadIdx.x) > 0.5)

{

A operations
}
else
{

B operations
}

Answer: (#operations executing the if [anywhere from 2-5 depending on ISA details]) + A + B

5. (7 points) Provide two advantages of a programmer-managed memory, such as the CUDA
shared memory, over a hardware managed cache?

Answer: simpler hardware structures, and better utilization due to tighter control.
6. (7 points) Assuming capacity were not an issue for registers or shared memory, give one
case where it would be valuable to use shared memory instead of registers to hold values

fetched from global memory?

Answer: threads can communicate read values with each other, saving bandwidth through
read-sharing or better coalescing.

7. (7 points) Assume the following code will execute all in the same warp of a CUDA thread
block. Write a some CUDA code in which the threads within the warp reverse an array 1ist
of length 32 in shared memory. Make your code as efficient in time and space as possible.

__shared float 1list[32]

list[threadldx % 32] = list[32 — (threadldx % 32) - 1];

Question 2 (20 points): CUDA Basics. For the vector addition kernel and the corresponding
kernel launch code, answer each of the sub-questions below.

__global _

void vecAddKernel (float* A d, float* B d, float* C_d, int n)
{

l. int i = threadIdx.x + blockDim.x * blockIdx.x;

2.if(i<n) C_d[i] = A _d[i] + B_d[il];
}

int vectAdd(float* A, float* B, float* C, int n)
{

//assume that size has been set to the actual length of
//arrays A, B, and C

int size = n * sizeof (float);

cudaMalloc((void **) &A d, size);
cudaMalloc((void **) &B d, size);
cudaMalloc ((void **) &C_d, size);
cudaMemcpy (A d, A, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (B_d, B, size, cudaMemcpyHostToDevice) ;

CoJdoUl b W

10. vecAddKernel<<<ceil (n/256), 256>>>(A d, B d, C d, n);

11. cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost)

}

1(a). (1 point) Assume that the size of A, B, and C is 1000 elements. How many thread
blocks will be generated?

4

1(b). (1 point) Assume that the size of A, B, and C is 1000 elements. How many warps are
there in each block?

8

1(c) (1 point) Assume that the size of A, B, and C is 1000 elements. How many threads will
be created in the grid?
1024

1(c) (3 points) Assume that the size of A, B, and C is 1000 elements. Is there any control
divergence during the execution of the kernel? If so, identify the line number of the
statement that causes the control divergence. Explain why or why not.

Yes, there is control divergence, which is caused by the if statement in line 2. Since the
total number of threads in the grid will be 1024, larger than the size of arrays, the last
warp will have divergence: the first 8 threads in the warp will take the true path and the
other 24 threads will take the false path.

1(b). (3 points) Assume that the size of A, B, and C is 768 elements. Is there any control
divergence during the execution of the kernel? If so, identify the line number of the
statement that causes the control divergence. Explain why or why not.

No, there is no control divergence. Since the total number of threads in the grid will be
768, the same as the size of the arrays, the last warp will not have divergence: all 32
threads will take the true path.

1(c). (5 points) As we discussed in class, data structure padding can be used to eliminate
control divergence. Assuming that we will keep the host data structure size the same
but pad the device data structure. Declare and initialize a new variable padded_size in
line 3 and make some minor changes to statements in lines 4, 5, and 6 to eliminate
control divergence during the execution of the kernel. Assume that random input values
to floating point addition operations will not cause any errors or exceptions.

int vectAdd(float* A, float* B, float* C, int n)
{
//assume that size has been set to the actual length of

//arrays A, B, and C

10. int size = n * sizeof (float);

11. int padded size = (ceil(n/256.0)*256) * sizeof (float);
12. cudaMalloc((void **) &A d, padded size);

13. cudaMalloc((void **) &B d, padded size);

14. cudaMalloc((void **) &C_d, padded size);

15. cudaMemcpy (A d, A, size, cudaMemcpyHostToDevice) ;

16. cudaMemcpy (B _d, B, size, cudaMemcpyHostToDevice) ;

10. vecAddKernel<<<ceil(n/256.0), 256>>>(A d, B d, C d,
ceil (n/256.0) *256) ;

11. cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost)

1(d). (3 points) With this change to the host code, do you think that the “if (i<n)” is still
needed in Line 2 of the original kernel? Why or why not?

It is no longer needed. Since n will always to multiples of block sizes with padding, all
threads will always have an i value smaller than n. There is no longer need for the test.

1(e). (3 points) For large vector sizes, say greater than 1,000,000 elements, do you expect that
the padded code will have significant impact on performance? Why or why not?

There should be little performance impact. The only warp that has control divergence in
the original code was the last warp. With only one out of 30000 warps affected by
control divergence, there was not much control divergence penalty to be eliminated.

Question 3 (20 points): MP Skills. The following streaming convolution kernel is executed
on an input image N, using the convolution filter Mc. P is the output of the kernel. The kernel
launch configuration and code are show below. BLOCK_SIZE is known at compile time, but
can be set anywhere from 16 to 256.

#define KERNEL SIZE 5
#define TILE SIZE (BLOCK_SIZE-KERNEL SIZE+1)

dim3 block (BLOCK SIZE, 1, 1);
dim3 grid((P.width+TILE SIZE-1)/TILE SIZE, 1, 1);

ConvolutionKernel<<<grid,block>>>(N,P) ;

__global void ConvolutionKernel (Matrix N, Matrix P)

{ int colOut = blockIdx.x * TILE SIZE + threadIdx.x;
int colIn = colOut-2;
__shared float Ns[KERNEL SIZE] [BLOCK SIZE];

Ns[O0] [threadIdx.x]
Ns[1l] [threadIdx.x]

0.0f;
0.0f;

for (int i=2; i<KERNEL SIZE-1; i++)

if (colIn >= 0 && colIn < N.width)
Ns[i] [threadIdx.x]= N.elements[(i-
KERNELisIZE/Z)*N.width+colIn];

else
Ns[i] [threadIdx.x] = 0.0f;

for (int i=0; i<P.height; i++)
{
if(colIn >= 0 && colIn < N.width && (i+KERNEL SIZE/2) < P.height)
Ns [KERNEL SIZE-1][threadIdx.x]= -
N.elements[(i+KERNEL_SIZE/2)*N.width + collIn];
else
Ns[KERNEL SIZE-1][threadIdx.x] = 0.0f;

float pValue = 0.0f;

if (threadIdx.x < TILE STZE && threadIdx.y < TILE_SIZE)
{
for (int j=0; J<KERNEL SIZE; Jj++)
for (int k=0; k<KERNEL SIZE; k++)
pvValue += Mc[j][k] *
Ns[threadIdx.y+j] [threadIdx.x+k];

if (colOut < P.width)
P.elements[i * P.width + colOut] = pValue;
}

for (int j=0; J<KERNEL SIZE-1; j++)
Ns[j] [threadIdx.x] = Ns[j+1][threadIdx.x];

(a) Out of the possible range of values for BLOCK_SIZE, for what values of
BLOCK _SIZE will this kernel function correctly when executing on a current device?
Answer: BLOCK_SIZE = 16 through 32. Since there is no synchronization, the whole block
must be within one warp in order to function correctly.

(b) If the code does not execute correctly for all BLOCK_SIZE values, suggest a fix to the
code to make it work for all BLOCK_SIZE values.
Answer: Add __synchthreads() after the two if statements in the second for loop.

(c) Out of the possible range of values for BLOCK_SIZE, for what values of
BLOCK _SIZE will the kernel completely avoid uncoalesced loads from global
memory?
Answer: none. Global memory loads will not be fully-aligned for any BLOCK_SIZE value.

(d) Does the last line in the kernel cause any shared memory bank conflicts? Why?
Answer: No. Bank conflicts occur between multiple threads in the same instruction, not one
thread in multiple instructions. Just because two accesses are written in the same line of
source code doesn't mean they "happen” at exactly the same time. The loads and stores from
and to shared memory are executed separately in this case.

Question 4 (10 points): Multi-GPU programming. You have been hired by an Italian F1 race
team which is designing the new chassis for their new prototype. In the first stage of the
design process, the engineering team would like to use small workstations with two GPUs
(sharing the PCle bus) to allow engineers to perform fast simulations of small parts of the
prototype. Each simulation is an iterative process where each point in the output 3D volume is
computed using two neighboring in each dimension from the input 3D volume points
(multiply and add for each neighbor, 12 floating-point operations total for each output point).
Assuming that each volume has 4096 x 1024 x 1024 points, the simulation code delivers 480
GFLOPS, and the PCle bandwidth is 6GBps:

(a) Assume that the data layout is that all elements in the x-dimension are consecutive, then
the y-dimensio, then the z-dimension.What is the optimal domain decomposition strategy
i.e., which dimension should be divided across GPUs)? Why?

Answer: The best domain decomposition strategy is to store the volume in such a way that
the x-y plains with the same z coordinate stay within the same GPU, and partition the
input and output volumes across the z-dimension. Since each x-y plane occupy
consecutive locations, this domain decomposition strategy allows each inter-GPU
communication to be implemented as a single memory transfer. That is, each plane can be
sent with extra work packing the data into a contiguous memory buffer before
transferring to the neighbor GPU, and unpacking the data after receiving the data from the
neighbor GPU.

(b) How would you implement the inter-GPU communication code in the CPU in CUDA 3.0
and CUDA 4.0?

(c) If GPU Compute is available, would it be the previous approach optimal if MPI
communication (2 GBps) is required?

(2) Each simulation step requires computing 2048 x 1024 x 1024 = 2 Gyga-points, which
means 12 x 2 = 24 GFLOPS. Hence, each simulation step takes 24 / 480 = 0.05 seconds. The
communication step transfers 2 x 1024 x 204 = 2 Mega-bytes, which takes 0.00067 seconds at
3GBps.

CUDA 4.0: the data communication is implemented using cudaMemcpy(), and the run-
time will select the best data transfer strategy. The worst case scenario is both GPUs
using the bus at the same time, so the bandwidth gets divided by 2 (3GBps). In this
case, the communication time is 1.3% of the total time. Hence it is not worthy to
implement a more complicated schemes to overlap communication and data transfers.

CUDA 3.0: the data communication requires using an intermediate host memory buffer.
This buffer hast to be host-pinned memory to accomplish full PCle bandwidth
utilization. As in the previous case, the worst case scenario is each GPU getting half
the PCle bandwidth. In this case two data transfers are needed, so the communication
time is 2 x 0.00076 = 0.00134 seconds. This represents 2.6% of the total execution
time. As in the previous case, it is not worthy to implement double-buffering schemes

in this case.

(3) If MPI is required, the communication time would be 0.00067 seconds to bring the data to
the host memory, 0.002 seconds for the MPI transfer (assuming half the bandwidth available),
and 0.00067 seconds to send the data to the destination GPU: 0.00334 seconds total. We do
not include the time spent on intermediate host memory copies because use use host-pinned
memory and GPU Direct allows the network card to use the same host-pinned buffer.

In this case data communication is 6.25% (1.06X speed-up). Most likely, the previous
approach would be still valid.

