
ECE408/CS483 Practice Exam #2, Fall 2012

 You are allowed to use any notes, books, papers, and other reference
material as you desire. No electronic assistance other than a calculator is
permitted.

 No interactions with humans other than course staff are allowed.

 This exam is designed to take 80 minutes to complete.

 This exam is based on lectures as well as lab MPs/projects.

 The questions are randomly selected from the topics we covered this
semester.

 You can write down the reasoning behind your answers for possible
partial credit.

 Good luck!

Question 1 (50 points): Short Answer

Answer each of the following questions in as few words as you can. Your answer will be
graded based on completeness, correctness, and conciseness.

1. (7 points) Give two reasons for adding extra "padding" elements to arrays allocated in GPU
global memory?

2. (7 points) Give two potential disadvantages associated with increasing the amount of work
done in each CUDA thread, such as loop unrolling techniques, using fewer threads in total?

3. (8 points) The following CUDA code is intended to perform a sum of all elements of the
partialSum array. First, provide the missing operation, and second estimate the fraction of

the iterations of the for loop that will have branch divergence.

__shared__ float partialSum[];

unsigned int tid = threadIdx.x;

for (unsigned int stride = blockDim.x;

stride > 0;

stride = stride >> 1)

{

_______________________ ;; missing operation

if (tid < stride)

partialSum[tid] += partialSum[tid+stride];

}

4. (7 points) For the following code, estimate the average run time in cycles of a thread.
Assume for simplicity that the __sin() function operates on radians, and that all operations

including the __sin() take 1 cycle.

if (__sin((float) threadIdx.x) > 0.5)

{

:

A operations

:

}

else

{

:

B operations

:

}

5. (7 points) Provide two advantages of a programmer-managed memory, such as the CUDA
shared memory, over a hardware managed cache?

6. (7 points) Assuming capacity were not an issue for registers or shared memory, give one
case where it would be valuable to use shared memory instead of registers to hold values
fetched from global memory?

7. (7 points) Assume the following code will execute all in the same warp of a CUDA thread
block. Write a piece of CUDA code in which the threads within the warp reverse an array
list of length 32 in shared memory. Make your code as efficient in time and space as
possible.

__shared__ float list[32]

Question 2 (25 points): CUDA Basics

The following code computes 1024 dot products, each of which is calculated from a pair of
256-element sub-vectors. Assume that the code is executed on G80. Use the code to answer
the following questions.

1 #define VECTOR_N 1024

2 #define ELEMENT_N 256

3 const int DATA_N = VECTOR_N * ELEMENT_N;

4 const int DATA_SZ = DATA_N * sizeof(float);

5 const int RESULT_SZ = VECTOR_N * sizeof(float);

...

6 float *d_A, *d_B, *d_C;

...

7 cudaMalloc((void **)&d_A, DATA_SZ);

8 cudaMalloc((void **)&d_B, DATA_SZ);

9 cudaMalloc((void **)&d_C, RESULT_SZ);

...

10 scalarProd<<<VECTOR_N, ELEMENT_N>>>(d_C, d_A, d_B, ELEMENT_N);

11

12 __global__ void

13 scalarProd(float *d_C, float *d_A, float *d_B, int ElementN)

14 {

15 __shared__ float accumResult[ELEMENT_N];

16 //Current vectors bases

17 float *A = d_A + ElementN * blockIdx.x;

18 float *B = d_B + ElementN * blockIdx.x;

19 int tx = threadIdx.x;

20

21 accumResult[tx] = A[tx] * B[tx];

22

23 for(int stride = ElementN / 2; stride > 0; stride >>= 1)

24 {

25 __syncthreads();

26 if(tx < stride)

27 accumResult[tx] += accumResult[stride + tx];

28 }

30 d_C[blockIdx.x] = accumResult[0];

31 }

1. (2 pts) How many threads are there in total?

2. (2 pts) How many threads are there in a Warp?

3. (2 pts) How many threads are there in a Block?

4. (2 pts) How many global memory loads and stores are done for each thread?

5. (2 pts) How many accesses to shared memory are done for each block? Count one access

from all threads as blockdim.x accesses.

6. (3 pts) List the source code lines, if any, that cause shared memory bank conflicts.

7. (3 pts) How many iterations of the for loop (line 23) will have branch divergence? Show
your derivation.

8. (3 pts) What is the largest and smallest ratios of floating point arithmetic to global memory
access in each thread?

9. (3 pts) Identify an opportunity to significantly reduce the bandwidth requirement on the
global memory. How would you achieve this? How many accesses can you eliminate?

10. (3 pts) How many registers will be needed to accommodate variable A in each block?

Question 3 (25 points). The following kernel is executed on a large matrix, which is tiled into
submatrices. To manipulate tiles, a novice CUDA programmer has written the following
device kernel to transpose each tile in the matrix. The tiles are of size BLOCK_SIZE by
BLOCK_SIZE, and each of the dimensions of matrix A is known to be a multiple of
BLOCK_SIZE. The kernel invocation and code are shown below. BLOCK_SIZE is known
at compile-time, but could be set anywhere from 1 to 20.

dim3 blockDim(BLOCK_SIZE,BLOCK_SIZE);

dim3 gridDim(A_width/blockDim.x,A_height/blockDim.y);

BlockTranspose<<<gridDim, blockDim>>>(A, A_width, A_height);

__global__ void

BlockTranspose(float* A_elements, int A_width, int A_height)

{

 __shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];

 int baseIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;

 baseIdx += (blockIdx.y * BLOCK_SIZE + threadIdx.y) * A_width;

 blockA[threadIdx.y][threadIdx.x] = A_elements[baseIdx];

 A_elements[baseIdx] = blockA[threadIdx.x][threadIdx.y];

}

1. (7 points) Out of the possible range of values for BLOCK_SIZE, for what values of
BLOCK_SIZE will this kernel function correctly when executing on a current device?

2. (6 points) If the code does not execute correctly for all BLOCK_SIZE values, suggest a fix
to the code to make it work for all BLOCK_SIZE values.

3. (6 points) Out of the possible range of values for BLOCK_SIZE, for what values of
BLOCK_SIZE will the kernel completely avoid uncoalesced accesses to global memory?

4. (6 points) For what value of BLOCK_SIZE (from 1 to 20) will the kernel experience the
most severe shared-memory conflicts?

