

ECE 408 Exam 2

Fall 2016

December 6th 2017

● You are allowed to use one 8.5”x11” sheet of notes.
● Write your name on the top of each following page.
● No interactions with any people other than course

staff are allowed.
● This exam is designed to take around 90 minutes to

complete. Your exam is due promptly 3 hours after
the test begins.

● No computing devices other than simple calculators
are permitted.

● You can write down the reasoning behind your
answers for possible partial credit.

● Good luck!

Name: ________________________

UID: ______________________

Name: ______________________________________

1

Question 1 1 (30 points, 30 minutes): Short Answer and Multiple Choice

1. Given a jxk matrix and a kxl matrix, we want to multiply these two matrices together and
calculate how many multiplication and addition operations our kernel performs. Your 408
TA, Sharon, claims that there are k multiplications and k-1 additions per thread. She
even shows you an example matrix multiplication for k=4 on paper:

Compare Sharon’s claim to the simple matrix multiplication implementation for MP2. Do
they match up? If not, explain.

2. Assume a DRAM system with a burst size of 256 bytes and a peak bandwidth of 240
GB/s. Assume a thread block size of 256 and warp size of 32 and that A is a float array
in the global memory. What is the maximal memory data access throughput we can
hope to achieve in the following access to A?

 int i = 4*blockIdx.x * blockDim.x + threadIdx.x;
 float temp = A[i];

(A) 240 GB/s
(B) 120 GB/s
(C) 60 GB/s
(D) 30 GB/s

3. Given a sparse matrix of integers with m rows, n columns, and k non-zeros. How many
integers are needed to represent the matrix in JDS transposed format? Recall that JDS

Name: ______________________________________

2

has a transposed representation. Also, assume that we do not explicitly track the length
of each row.
(A) m+n+k
(B) 2k+m+1
(C) 2k+m+n
(D) 2m+1

4. What is the CUDA API call that makes sure that all previous kernel executions and
memory copies have been completed?
(A) __syncthreads()
(B) cudaDeviceSynchronize()
(C) cudaStreamSynchronize()
(D) __barrier()

5. When your parallel reduction kernel generates a slightly different result than a sequential
reduction function for a floating-point input array, what would be the most likely
reason?

6. What type of CUDA memory allocation should be used when allocating host memory for
asynchronous data transfer? Why?

7.

Name: ______________________________________

3

Question 2: Privatization

This question tests your understanding of parallel histogram computation and privatization.
Assume that we would like to privatize a histogram that has 2048 bins. Each input data value
(buffer array elements) will range from 0 to 2047. However, the shared memory can only
accommodate 1024 bins for each block. As a compromise, we decide to privatize the first half of
the bins into the shared memory. Whenever the data value falls into a bin in the second half, we
will have to increment the global bin.

(A) Complete the following kernel to implement the partial privatization of the histogram.

__global__ void histo_kernel(unsigned char *buffer, long size, unsigned int *histo)

{

 __shared__ unsigned int histo_private[1024];

 int i;

 for (i = _________________;_i <___________;__i+=______________) histo_privat[i] = 0;

 __syncthreads();

 int i = threadIdx.x + blockIdx.x * blockDim.x;

 // stride is total number of threads

 int stride = blockDim.x * gridDim.x;

 while (i < size) {

if (_________________________) atomicAdd(&(private_histo[buffer[i]), 1);

 else atomicAdd(__,1);

i += stride;

 }

 __syncthreads();

 for (i= ______________________; i < _________________________; i += ________________)

atomicAdd(__________________________________);

}

Name: ______________________________________

4

(B) Can you think of a better partial privatization strategy that will likely result in less contention
in the while loop? Outline your strategy.

Name: ______________________________________

5

Question 3: Parallelization

Consider the dense matrix-vector multiplication Ax = b. The ith element of b is the dot product of
x with the ith row of A. Your friend writes a kernel for input matrices with tens of thousands of
columns and dozens of rows, correctly invoked with one thread per column.
A is a pointer to a 𝑛𝑢𝑚𝑅𝑜𝑤𝑠 × 𝑛𝑢𝑚𝐶𝑜𝑙𝑠 row-major matrix,
b is a pointer to a vector of length numRows, and
x is a pointer to a vector of length numCols.

1: __global__ void mv_gpu(float *b, const float *A, const float *x,
2: const int numRows, const int numCols) {
3: const int colIdx = blockIdx.x * blockDim.x + threadIdx.x;
4: if (colIdx < numCols) {
5: for (int rowIdx = 0; rowIdx < numRows; ++rowIdx) {
6: b[rowIdx] += A[rowIdx * numCols + colIdx] * x[colIdx];
7: }
8: }
9: }

(1/4) The result is incorrect! What is the problem?

(1/4) Describe a correct approach (it does not have to be optimal, but it should be highly
parallel), either by modifying the proposed kernel or through a new parallelization. Be sure to
specify if any additional memory or synchronization is needed. Mention at least one potential
performance shortfall from your approach for the input matrix shape bolded above. Any CUDA
code written will be ignored.

Name: ______________________________________

6

(1/2) Describe an approach that achieves a high degree of parallelism for an input matrix with
with thousands of rows and dozens of columns. Be sure to specify any memory or
synchronization needed. Describe at least one potential performance shortfall from your
approach. Propose an optimization to improve the performance given the shortfall. Any CUDA
code written will be ignored.

Question 4. Sparse Matrix Multiplication

This question tests your knowledge of Sparse Matrix representation and operation. For your
convenience, we are enclosing a lecture slide that illustrates the JDS_transposed format and
kernel design with a small example.

Name: ______________________________________

7

(A) In the following JDS_T kernel, fill in the missing indexing expressions for accessing data
(input matrix), x (input vector) and y (output vector).

Name: ______________________________________

8

1.__global__ void SpMV_JDS_T(int num_rows, float *data, int *col_index, int *jds_t_col_ptr,
int jds_row_index, float *x, float *y) {

2. int row = blockIdx.x * blockDim.x + threadIdx.x;
3. if (row < num_rows) {
4. float dot = 0;

unsigned in sec = 0;
5. while (jds_t_col_ptr[sec+1]-jds_t_col_ptr[sec] > row){
6. dot += data[_________________] * x[______________________________];
7. sec++;

}
8. Y[_______________] = dot;

 }
 }

9

Name: ______________________________________
(B) Assume a matrix that has 32 original rows, 64 columns, and 10 non-zeros in every row. After
we transform the matrix into JDS-transposed layout, and launch the SpMV_JDS_T kernel. Is
there any control divergence? Why or why not?

(C) In (B), are the memory accesses to the matrix in the for-loop (line 6) coalesced? Why or why
not?

Name: ______________________________________

10

Question 5. Convolution Neural Network

This question tests your understanding of the convolution layer of a CNN. We will start with a
basic kernel implementation.

W is the convolution filter weight tensor, organized a tensor W[M, C, K, K], M is the number of
output feature maps, C is the number of input feature maps, K is the height and width of each
filter.

X is the input feature map, organized as a tensor X[C, H_out+K-1, W_out+K-1], where H_out is
the height of ach output feature map, W_out is the width of each output feature map.

Y is the output feature map, organized as a tensor Y[M, H_out, W_out].

Assume that the blockDim is set to (TILE_WIDTH, TILE_WIDTH,1) and that gridDim is set to
(M, H_grid*W_grid, 1).

(A) Fill in the missing parts of the basic kernel implementation. The kernel has each thread
block to calculate an tile of output feature map elements. Each thread generates one
output map element.

__global__ void ConvLayerForward_Basic_Kernel(int C, int W_grid, int K,
 float* X, float* W, float* Y)

{
 int m = blockIdx.x;
int h = blockIdx.y / W_grid + threadIdx.y;
int w = blockIdx.y % W_grid + threadIdx.x;
float acc = 0.;
for (int c = 0; c < C; c++) { // sum over all input channels

 for (int p = 0; p < K; p++) // loop over KxK filter
 for (int q = 0; q < K; q++)

 acc += X[___________________] * W[_______________________];
}
Y[_____________] = acc;

}

Name: ______________________________________

11

(B) Define the meaning of variables h, and w in ConLayerForward_Basic_Kernel.

h: ____________________________________

w: ____________________________________

(C) For a 72x64 input feature map, 8x8 tiles and 3x3 convolution filters, if we use the tiled
2D convolution, what this the average number of times that each input feature map
element is reused once it is loaded into the shared memory?

(D) If we use each thread block to generate one tile of output feature map elements, how
many thread blocks will be generated when we launch the kernel?

Name: ______________________________________

12

(E) In order to use matrix-multiplication formulation, you need to convert the input feature
maps into the unrolled matrix. Assume that we have three 3x3 input feature maps and
convolution filter is 3x3. Please fill out the unrolled matrix below based on the contents of
the input feature maps. Use only the entries needed.

Name: ______________________________________

13

Name: ______________________________________

14

(D) When we form the A matrix, describe the actions we need to do in order to convert the W
tensor into the A matrix. Explain your answer.

(E) If we use tiled matrix multiplication, how many times do you expect the unrolled matrix
elements to be reused if we used a 2x2 tile for the example in (C)?

