ECE408/CS483/CSE408 Exam #1, Fall 2017
Tuesday, October 17, 2017

You are allowed one 8.0x11.5 cheat sheet with notes on both sides. The minimal font
size for your text on the cheat sheet should be 8pts.
No interactions with humans other than course staff are allowed.

This exam is designed to take 170 minutes to complete. To eliminate time pressure and
allow for any unforeseen difficulties, we will give everyone 180 minutes.

This exam is based on lectures, textbook chapters, as well as lab MPs/projects.

The questions are randomly selected from the topics we covered up to and including
parallel scan.

You can write down the reasoning behind your answers for possible partial credit.

Good luck!

Question 1 (30 points, suggested time allocation 40 minutes): multiple-choice and short-
answer questions. If you get more than 30 points by answering all questions (1-9), your score
will saturate at 30 points. The bonus question is extra.

For multiple-choice questions, give a concise explanation for your answer for possible partial
credit. Answer each of the short-answer questions in as few words as you can. Your answer will
be graded based on completeness, correctness, and conciseness.

1. (4 points) We want to use each thread to calculate four (4) output elements of a vector
addition. Each block processes 4*blockDim.x consecutive elements that form 4 sections. All
threads in each block will first process a section with each thread processing one element. They
will then all move to the next section with each thread processing one element. For each
section, consecutive threads should process consecutive elements. What would be the kernel
code expression for forming the value of i, the data index of the first element to be processed by
each thread?

(A) i=blockldx.x*blockDim.x *4;

(B) i=blockldx.x*threadldx.x + threadldx.x

(C) i=blockldx.x*blockDim.x*4 + threadldx.x

(D) i=blockldx.x*blockDim.x + threadldx.x*4

Answer:
Explanation:

2. (4 points) For vector addition, assume that the vector length is 8,000, each thread calculates
four (4) output elements, and the thread block size is 1,024 threads. The programmer
configures the kernel launch to have a minimal number of blocks to cover all output elements.
How many threads will be in the grid?

(A) 1,024

(B) 8,196

(C) 2,048

(D) 8,000

Answer:
Explanation:

3. (4 points) We are to process an 565x784 (m=565 pixels in the y or vertical dimension, n=784
pixels in the x or horizontal dimension) picture with the PictureKernel below:

__global__ void PictureKernel(float*x Pin, floatx Pout, int m, int n) {

// Calculate the row # of the d_Pin and d_Pout element to process
int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of the d_Pin and d_Pout element to process
int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one element of d_Pout 1if 1in range
if ((Row < m) && (Col < n)) {
Pout[Row*xn+Col] = 2xPin[Rowxn+Col]}

Assume that each block is organized as a 2D 16x32 array of threads (16 in the y dimension and
32 in the x dimension). Which of the following statements sets up the kernel configuration
properly? Assume that int variable n has value 784 and int variable m has value 565. The kernel
is launched with the statement PictureKernel<<<gridDim, blockDim>>>(d_Pin, d_Pout, m, n);

(A) dim3 gridDim(ceil(1, ceil(n/32), ceil(m/16); dim3 blockDim(1, 32 16);
(B) dim3 gridDim(ceil(n/32.0), ceil(m/16.0), 1); dim3 blockDim(32, 16, 1);
(C) dim3 gridDim(ceil(m/32.0), ceil(n/16.0), 1); dim3 blockDim(32, 16,1);
(D) dim3 gridDim(ceil(m/16), ceil(n/32), 1); dim3 blockDim(16, 32, 1);

Answer:
Explanation:

4. (4 points) In Question 3, how many warps will have control divergence?
(A)O

(B) 25*32 + 35

(C) 565

(D) 576

Answer:
Explanation:

5. (4 points) Write some CUDA kernel code in which the threads in the same block transpose
the elements of a matrix mat in shared memory in-place. That is, all threads should see that
mat[i][j] is swapped with element mat[j][i] after the transposition. You can assume that that each
block has dimensions dim3(16,16,1). Make your code as efficient in time and space as possible.

_shared__ float mat[16][16];

Answer:

6. (4 points) Your kernel runs on a device where each Streaming Multiprocessor has 32K
registers and 64KB of shared memory. The kernel code uses 30 registers (local variables) and
5KB of shared memory. The kernel is launched with 1,920,000 threads in total organized into a
square grid with dimension 50 on each side. What is the maximum number of simultaneous
blocks that will run on a single SM?

Answer:

7. (4 points) What are the possible values of *dst after this kernel execution?

__global__ void race_me(char xdst) {
dst[0] = threadIdx.x;

// host code
cudaMalloc(&dst, 1)
cudaMemset(dst, 3)
race_me<<<1l,2>>>race_me(dst);

(A)O
B)1
(€)0, 1
(D)0, 1, 3
(B)3

Answer:
Explanation:

8. (4 points) Which of the following are design philosophies in GPU architecture?
(1) GPUs use massive parallelism to hide stalls

(2) GPUs have many low-latency execution units

(3) GPUs spread the cost of managing an instruction stream across many ALUs

(A)land 2
(B)land 3
(C)2and 3
(D) all of the above

Answer:
Explanation:

9. (4 points) Your friend has profiled a kernel and discovered that the performance is limited by
the latency of the divide operator. It turns out variable d in his kernel code (below) is 1 half the
time, so your friend proposed the following optimization:

if (1 ==d) r =d; elser =1/ d;

Unfortunately, the performance did not improve. In one sentence, explain why.

Answer:

(bonus 3 points) List the errors and typos that you reported via Piazza postings, e-mails, or in
person communication with Prof. Hwu.

Question 2 (15 points, suggested time allocation 20 minutes): CUDA Basics. For the vector
addition kernel and the corresponding kernel launch code, answer each of the sub-questions
below.

__global__

void vecAddKernel(float*x A, floatx B, float* C, int n) {
int i = threadIdx.x + 2xblockDim.x * blockIdx.x;
if(i<n) C_d[i] = A_d[i] + B_d[1i];
i += blockDim.x;
if(i<n) C_d[i] = A_d[i] + B_d[i];

int vectAdd(floatx A, float*x B, float*x C, int n) {
// assume that size has been set to the actual length of
// arrays A, B, and C
int size = n * sizeof(float);

cudaMalloc((void **) &A_d, size);

cudaMalloc((void **x) &B_d, size);

cudaMalloc((void **x) &C_d, size);

cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice)}
cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice)}
vecAddKernel<<<ceil(n/(2*x1024.0)), 1024>>>(A_d, B_d, C_d, n);
cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost)}

2(a). (2 point) Assume that the size of A, B, and C is 20,000 elements each. How many thread
blocks will be generated?

Answer:
Explanation:

2(b). (2 point) Assume that the size of A, B, and C is 20,000 elements each. How many warps
are there in each block?

Answer:
Explanation:

2(c) (2 point) Assume that the size of A, B, and C is 20,000 elements. How many threads will be
created in the grid?

Answer:
Explanation:

2(d) (4 points) Assume that the size of A, B, and C is 20,000 elements each. Is there any control
divergence during the execution of the kernel? If so, identify the block number and warp humber
that causes the control divergence. Explain why or why not.

Answer:
Explanation:

2(e). (5 points) Assume that the size of A, B, and C is 40,000 elements each. Is there any
control divergence during the execution of the kernel? If so, identify the line number of the
statement that causes the control divergence. Explain why or why not.

Answer:
Explanation:

Question 3. (15 points, suggested time allocation 25 minutes): Your friend wants to find the
sum of all elements of the bigArr array with GPU to boost his program performance. After he
heard that you are taking ECE408, he comes to you for help, desperately. His idea is as follows:
1) load elements into shared memory of blocks; 2) use threads of each block to sum up
elements in its shared memory; 3) output the sum by each block to form a new array
kernelOutput; 4) use serial code to calculate the sum of all elements in kernelOutput. Assume
that the kernel is launched with 1024 threads in each block.

#define BLOCK_SIZE = 1024
Global variable: float bigArr[0..n-1] (the lengthis n)
float kernelOutput[0..ceil(n / BLOCK_SIZE) - 1]
Kernel code:
01. __shared__ float partialSum[2048];
02. unsigned int bid = blockldx.x;
03. unsigned int t = threadldx.x;

04. unsigned int start = X ;
05. if (start +t <n)

06. partialSum|[t] = bigArr[start + t];

07. else

08. partialSum|[t] = 0.0f;

09. if (Y <n)

10. partialSum[Z] = bigArr[Y 1;
11. else

12. partialSum| Z] = 0.0f;

13. for (unsigned int stride = 1; stride <= BLOCK_SIZE; stride *= 2)

14. {

15. __syncthreads();

16. if (t <BLOCK_SIZE / stride)

17. partialSum|[t*stride*2] += partialSum|[t*stride*2+stride];

18. }

19. if t==0)

20. kernelOutput[bid] = partialSum[0];

3(a). (3 pts) Please help your friend fill codes in the blanks:
X:

Y:

3(b). (2 pts) Does control divergence happen in the 3rd iteration of the for-loop? Assume that
the warp size is 32. (Hint: draw a picture of how the threads are mapped to the data for the next
few sub-questions.)

Answer:
Explanation:

3(c). (3 pts) How many warps in a block are active in the 3rd iteration of the for-loop? Assume
that the warp size is 32.

Answer:
Explanation:

3(d). (3 pts) Do you think the method your friend uses to read the global memory is coalesced?
Why?

Answer:
Explanation:

3(e). (4 pts) Can we put __syncthreads() in the if-statement as follows? Why?

if (t < BLOCK_SIZE / stride) {
__syncthreads();
partialSum[t*xstridex2] += partialSum[t*xstridex2+stride];

Answer:
Explanation:

Question 4. (20 points, suggested allocation of time 35 minutes).

Your friend Jin suggested that doing the shared matrix-matrix multiplication (M x N) with matrix
M transposed (M_trans) might increase performance in terms of memory coalesced (M_trans is
the transposed matrix of M). The host code would provide M in its transposed form when calling
the kernel. Jin being busy could not finish the transposed shared matrix-matrix multiplication
and left few blanks to fill in. His idea may or may not be correct. Note that M_trans and N are
square matrices.

01 #define TILE_WIDTH 32

02

03 __global__ void sgemm(float* M_trans, floatx N, float* P, 1int
Width) {

04

05 __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];

06 __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

07

08 int bx = blockIdx.x3 1int by = blockIdx.y;

09 int tx = threadIdx.xj int ty = threadIdx.y;

10

11 // Identify the row and column of the P element to work on
12 int Row = by * TILE_WIDTH + ty;

13 int Col = bx * TILE_WIDTH + tx;

14

15 float Pvalue = 03

16 // Loop over the M and N tiles required to compute P element
17 for (int m = 03 m < (Width - 1)/TILE_WIDTH + 13 ++m) {

18

19 // Collaborative load of M and N tiles -+into shared memory
20 if(Row < Width && m * TILE_WIDTH + tx < Width) {

21 Mds[ty]l[tx] = M_trans[_______ _______________ 1s

22 } else {

23 Mds[ty][tx] = 03

24 }

25 if(Col < Width & m * TILE_WIDTH + ty < Width)) {

26 Nds[ty][tx] = N [_________ 0 ___ 13

27 } else {

28 Nds[ty]l[tx] = 03

29 }

30 __syncthreads ()

31

32 if(Row < Width && Col < Width) {

33 for (int k = 03 k < TILE_WIDTH; ++k) {

34 Pvalue += Mds[_____ 10 ____] *» Nds[_____ 10 ____ 1s
35 }

36 }

37 __syncthreads();

38 }

39 if(Row < Width && Col < Width)

40 P[RowxWidth + Col] = Pvalue;

41 }

4(a) (6 points) Fill in the missing index calculations to make this code run correctly. If you think it
is impossible to make this code to run correctly, state why. (Hint: Draw a picture of matrix
multiplication for the original layout M, study the behavior of the tiles, draw another picture of
matrix multiplication based on transposed M_trans, adjust the use of threads in loading the tile
elements to maximize global memory coalescing if necessary.)

4(b) (3 points) For the tiled matrix-matrix multiplication (MxN) based on the original row-
major layout, which input matrix will have coalesced access? (Hint: Draw a picture of the tile
loading access patterns.)

(A) M

(B) N

(C) Both

(D) Neither

Answer:
Explanation:

4(c) (3 points) For the transposed (M is transposed) tiled matrix-matrix multiplication
(MxN) based on row-major layout, which input matrix will have coalesced access? (Hint: Look at
your picture and make sure that you adjust the tile loading index calculation to maximize
coalecing if necessary.)

(A)M
(B)N

(C) Both
(D) Neither

Answer:
Explanation:

4(d) (3 points) For the basic matrix-matrix multiplication (MxN) (without tiling) based on row-
major layout, which input matrix will have coalesced access? (Hint: Draw a picture of the access
patterns.)

aM

b) N

) Both

d) Neither

Answer:
Explnantion:

4(e) (3 points) For the transposed (M is transposed) basic matrix-matrix multiplication
(MxN) (without tiling) based on row-major layout, which input matrix will have coalesced
access? (Hint: Draw a picture of the access patterns.)

ayM

b) N

¢) Both

d) Neither

Answer:
Explanation:

4(f) (2 points) Was Jin correct on his assumption? Suppose the transposed matrix is given.
Justify your answer.

Answer:
Explanation:

Question 5. (20 points, suggested time allocation 40 minutes) Convolution Fun. After
teaching your roommate how to do parallel convolution, they come up with the following kernel.
Their kernel is similar to the Strategy 2 presented in class where enough threads are
instantiated to load all the input elements of a tile in one round. There are three major
differences. Each thread block calculates two adjacent tiles in the x-dimension and the tiles and
mask are no longer cubes. Look at the code below and answer the following questions.

#define TILE_X 8 // Output tile width in the X-dimension
#define TILE_Y 4 // Output tile width in the Y-dimension
#define TILE_Z 2 [/l Output tile width in the Z-dimension

#define NUM_X 2

#define X_MASK_WIDTH 3

#define Y_MASK_WIDTH 3

#define Z_MASK_WIDTH 5

#define MASK_SIZE X_MASK_WIDTH * Y_MASK_WIDTH * Z*MASK_WIDTH

__constant__ float mask[Z_MASK_WIDTH][Y_MASK_WIDTH][X_MASK_WIDTH];

__global__ void conv3d(float *input, float *output, const int z_size, const int y_size, const int
x_size) {

__shared__ float inputTile [TILE_Z+Z MASK_WIDTH-1][TILE_Y+Y_MASK_WIDTH-
1][TILE_X+X_ _MASK_WIDTH-1];

int tx = threadldx.x; int ty = threadldx.y; int tz = threadldx.z;

int bx = blockldx.x; int by = blockldx.y; int bz = blockldx.z;

for(int x_tile = 0; x_tile < NUM_X; x_tile++) {

intx_0=NUM_X*bx*TILE_X + tx + x_tile * TILE_X;
inty o=by*TILE_Y + ty;
intz_o=Dbz*TILE_Z + tz;

intx_i=x _0-X MASK WIDTH/2;
inty i=y_o-Y_MASK_WIDTH/2;
intz_i=z_o-Z MASK _WIDTH/2;

if(X i>08&&Y i>=0&& 27 i>=08&&X _i<Xx size && Yy i<y size && z_i < z_size)
inputTile[tz][ty][tx] = input[(z_i * y_size +y i) * x_size + x_i];

else
inputTile[tz][ty][tx] = 0.0;

float acc = 0.0;

if(tz < TILE_Z && ty < TILE_Y && tx < TILE_X) {

for(int z_mask = 0; z_mask < Z MASK_WIDTH; z_mask++) {
for(inty_mask = 0; y_mask <Y_MASK_WIDTH; y_mask++) {
for(int x_mask = 0; x_mask < X_MASK_WIDTH; x_mask++) {
acc += kernel[z_mask][y_mask][x_mask] * inputTile[tz+z_mask][ty+y_mask][tx+x_mask];

}

}

if(z_o<z_size && Yy 0 <Yy _size && X_0 < x_size)
output[(z_o *y_size +y _0) * x_size + X_0] = acc;

}
5(a) (4 points) Write out the host code for declaring the grid and block dimensions below.

Answer:

5(b) (4 points) Unfortunately your roommate wasn’t paying attention when you talked about
__syncthreads() and when you should use it. Please insert only the necessary __syncthreads()
to the kernel above to make sure it works.

5(c) (3 points) For an internal output tile, what is the average number of times that each input
element will be accessed from the shared memory during the calculation an output tile? (Note:
We are referring to tiles in this case, not thread blocks. Each thread block calculates two
adjacent output tiles.)

Answer:
Explanation:

5(d) (3 points) How does your answer to (C) compare to an output tile that is a cube that
contains the same volume and why? Note: We are referring to tiles in this case, not thread
blocks. Each thread block calculates two adjacent output tiles. (Hint: Are all the input tile
elements reused the same number of times? Does it matter where they are in the input tile?)

Answer:
Explanation:

5(e) (3 points) Consider another output tile with dimensions 2x4x8. Is there a difference in
terms of execution efficiency of the kernel between this 2x4x8 output tile and the output tile in
the kernel above with dimensions 8x4x2? If so explain why, if not, explain why not.

Answer:
Explanation:

5(f) (3 points) Is there any inefficiency in loading the input tiles for the two adjacent output tiles
processed by each block? If so, identify the cause of the inefficiency and briefly suggest a
strategy to eliminate the inefficiency. (Hint: Draw a picture of the input tiles for these two ouput
tiles.)

Answer:

