
ECE 408 Exam 2, Fall 2017

December 12th, 2017

● You are allowed one 8.0x11.5 cheat sheet with notes on both sides. The minimal

font size for your text on the cheat sheet should be 8pts.

● No interactions with humans other than course staff are allowed.

● This exam is designed to take 150 minutes to complete. To allow for any

unforeseen difficulties, we will consider giving everyone up to 180 minutes.

● This exam is based on lectures, textbook chapters, as well as lab MPs/projects.

● The questions are randomly selected from the topics we covered.

● You can write down the reasoning behind your answers for possible partial credit.

Good luck!

Name: ________________________

Netid: _______________________

UIN: ______________________

Question 1: ____________________

Question 2: ____________________

Question 3: ____________________

Question 4: ____________________

Question 5: ____________________

Question 6: ____________________

Name: ______________________________________

1

Question 1 (30 points, 40 minutes): multiple-choice and short-answer questions. If you get

more than 30 points by answering all questions (1-10), your score will saturate at 30 points. The

bonus question is extra.

For multiple-choice questions, give a concise explanation for your answer for possible partial

credit. Answer each of the short-answer questions in as few words as you can. Your answer will

be graded based on completeness, correctness, and conciseness.

1. (3 points) For the Brent-Kung scan kernel based on reduction trees and inverse

reduction trees, assume that we have 2048 elements, which of the following values is

the closest to the total number of useful floating-point add operations performed in both

the reduction tree phase and the inverse reduction tree phase?

(A) (1024-1)*2

(B) (2048-1)*2 - 11

(C) 1024*2048

(D) 2048*11

2. (4 points) For the Brent-Kung scan kernel based on reduction trees and inverse reduction

trees, assume that we have 2048 elements in each section and warp size is 32, how

many warps in each block will have control divergence during the reduction tree phase

iteration where stride is 64?

(A) 0

(B) 1

(C) 16

(D) 32

3. (4 points) For a processor that supports atomic operations in L2 cache, assume that

each atomic operation takes 5ns to complete in L2 cache and 500ns to complete in

Name: ______________________________________

2

DRAM. Assume that 99.9% of the atomic operations hit in L2 cache. What is the

approximate throughput for atomic operations on the same global memory variable?

(A) 1/500 G atomic operations per second

(B) 1/50 G atomic operations per second

(C) 1/5 G atomic operations per second

(D) 1/13.6 G atomic operations per second

4. (3 points) In Question 3, if a kernel performs 10 floating-point operations per atomic

operation, what is the approximate maximal floating-point throughput of the kernel

execution as limited by the throughput of the atomic operations?

(A) 1 GFLOPS

(B) 2 GFLOPS

(C) 10 GFLOPS

(D) 50 GFLOPS

5. (3 points) Given a sparse matrix of integers with R original rows, L non-zero elements in

the original row with the largest number of non-zeros, and a total of N non-zeros. How

many integers are needed to represent the matrix in JDS-T? Assume that we keep track

of the number of non-zeros in each original row, as we specified in the MP assignment.

(A) R+L+N

(B) 2R+L+N+1

(C) 2R+L+2N

(D) 2R+2L+N

6. (4 points) For a sparse matrix-vector multiplication (SpMV) with R rows, a total of N non-

zero elements, and a maximal of L non-zeros in each row, how many times is each

matrix element used?

Name: ______________________________________

3

(A) 1

(B) 2

(C) R

(D) L

7. (4 points) For a sparse matrix-vector multiplication (SpMV) with R rows, C columns, a

total of N non-zero elements, how many times will each vector element be used?

(A) 1

(B) N/R on average

(C) N/C on average

(D) R

8. (4 points) Keven has a 320MB array that he would like to process with GPU. He

measured that the execution time of the code on CPU was 0.2 seconds. He also

implemented a kernel and measured that the kernel execution on the GPU with the data

in the GPU memory was 0.004 seconds, a 50x speedup! However, he needs to transfer

the data into the GPU memory and transfer 320MB data output data back to the host

memory. His system has a PCIe Gen3 x16 interconnect. What would the real speedup

be?

(A) 40x speedup

(B) 20x speedup

(C) 5x speedup

(D) 1.5x slow down

9. (2 points) For the following host code sequence:

1) cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),.., stream0);

2) cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),.., stream0);

3) cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),.., stream1);

4) cudaMemcpyAsync(h_C+i+SegSize, d_C1, SegSize*sizeof(float),.., stream1);

5) cudaMemcpyAsync(d_A2, h_A+i+2*SegSize, SegSize*sizeof(float),.., stream2);

6) cudaMemcpyAsync(h_C+i+2*SegSize, d_C2, SegSize*sizeof(float),.., stream2);

Name: ______________________________________

4

 Which of the statements could be executed in parallel on the GPU

(A) 1) and 2)

(B) 2) and 3)

(C) 1) and 3)

(D) 2) and 4)

10. (2 points) When your parallel reduction kernel generates a slightly different result than a

sequential reduction function for a float input array, what would be the most likely

reason?

(A) The hardware failed

(B) There is a missing __syncthreads() call

(C) Floating-point operations are not necessarily commutative nor associative

(D) CPU and GPUs have different precision for float numbers

(Bonus 2 points) List the errors and typos that you reported via Piazza postings, e-mails, or

in person communication with Prof. Hwu or Carl Pearson. (0.5 points for each item.)

Question 2 (15 points, suggested time allocation 20 minutes): This question tests your

understanding of parallel histogram computation and privatization.

You are the owner of a supermarket and want to know the distribution of the price tags of your

merchandise. So you decided to build a histogram with intervals of $5(e.g $0 <= histo[0] < $5,

$5 <= histo[1] < $10 and so on) on a GPU. However, the shared memory can only

accommodate 256 bins for each block. As a compromise, you decide to privatize the first 256 of

the bins into the shared memory. Whenever the data value doesn’t fall in the first 256 bins, you

Name: ______________________________________

5

will have to increment the global bins. Assume that the prices are integer values and the global

histogram array is sized to accommodate the prices of all the items. Also, assume that all

global histogram elements have been initialized to zero before the kernel is launched.

(A) (3 Points) Complete the following kernel to implement the partial privatization of the

histogram.
1. /* histo_kernel is launched with the following parameters

2.

3. dim3 gridDim(8);

4. dim3 blockDim(256);

5. */

6.

7. __global__ void histo_kernel(unsigned int *prices, long size, unsigned int *histo){

8. __shared__ unsigned int histo_private[256];

9.

10. // Reset histogram

11. histo_private[__threadidx.x_(+.5)_] = 0;

12. __syncthreads();

13.

14. int i = threadIdx.x + blockIdx.x * blockDim.x;

15. // stride is total number of threads

16. int stride = blockDim.x * gridDim.x;

17.

18. while (i < size) {

19. if (prices[i] <___1280__(+.5)_) atomicAdd(__&(histo[prices[i] / 5])_(+.5)_, 1);

20. else atomicAdd(__&(histo[prices[i] / 5])_(+.5)_, 1);

21. i += stride;

22. }

23. __syncthreads();

24.

25 // contribute to global histogram

26. atomicAdd(__&(histo[threadIdx.x])_(+.5)_ , __histo_private[threadIdx.x]_(+.5)_);

27. }

(B) (4 Points) how many non-atomic global memory reads/writes and shared-memory/global-memory
atomic operations are being performed by all the threads executing your kernel if there are 4096 items
in total which are all priced less than $1280?

Non-atomic Global Memory reads:

Non-atomic Global Memory writes:

Shared-memory atomic operations:

Global-memory atomic operations:

Name: ______________________________________

6

(C) (4 Points) how many non-atomic global memory reads/writes and shared-memory/global-memory
atomic operations are being performed by all the threads executing your kernel if there are 4000 items
in total which are all priced less than $1280?

Non-atomic Global Memory reads:

Non-atomic Global Memory writes:

Shared-memory atomic operations:

Global-memory atomic operations:

(D) (4 Points) how many non-atomic global memory reads/writes and shared-memory/global-memory
atomic operations are being performed by your kernel if there are 4000 items are priced less than

$1280 and 96 items are priced above $1280?

Non-atomic Global Memory reads:

Non-atomic Global Memory writes:

Shared-memory atomic operations:

Global-memory atomic operations:

Name: ______________________________________

7

Question 3: Parallelization (15 points, suggested time allocation 25 minutes):

Consider the dense matrix-vector multiplication Ax = b. The ith element of b is the dot product of

x with the ith row of A.

A is a pointer to a 𝑛𝑢𝑚𝑅𝑜𝑤𝑠 × 𝑛𝑢𝑚𝐶𝑜𝑙𝑠 row-major matrix,

b is a pointer to a vector of length numRows with all entries initialized to 0, and

x is a pointer to a vector of length numCols.

The following is a CPU sequential code that needs to be parallelized:

void mv_cpu(float *b, const float *A, const float *x, const int numRows,

const int numCols) {

 for (int colIdx = 0; colIdx < numCols; ++colIdx) {

 for (int rowIdx = 0; rowIdx < numRows; ++rowIdx) {

 b[rowIdx] += A[rowIdx * numCols + colIdx] * x[colIdx];

 }

 }

}

Your colleague proposes the following three parallelizations to take advantage of GPU

parallelism:

1. /* mv_gpu_1 launched with the following parameters

2. dim3 gridDim(10);

3. dim3 blockDim(256);

4. */

5. __global__ void mv_gpu_1(float *b, const float *A, const float *x,

 6. const int numRows, const int numCols) {

7. const int rowStart = blockIdx.x * blockDim.x + threadIdx.x;

 8.

9. for (int r = rowStart; r < numRows; r += gridDim.x * blockDim.x) {

10. float dot = 0;

11. for (int c = 0; c < numCols; ++c) {

12. dot += A[r * numCols + c] * x[c];

13. }

14. b[r] = dot;

15. }

16. }

1. /* mv_gpu_2 launched with the following parameters

2. dim3 gridDim(16);

3. dim3 blockDim(256);

4. */

5. __global__ void mv_gpu_2(float *b, const float *A, const float *x,

 6. const int numRows, const int numCols) {

7. int colStart = blockIdx.x * blockDim.x + threadIdx.x;

 8.

9. for (int c = colStart; c < numCols; c += gridDim.x * blockDim.x) {

10. const float v = x[c];

11. for (int r = 0; r < numRows; ++r) {

Name: ______________________________________

8

12. atomicAdd(&b[r], A[r * numCols + c] * v);

13. }

14. }

15. }

1. /* mv_gpu_3 launched with the following parameters

2. dim3 gridDim(4, 4);

3. dim3 blockDim(16,16);

4. */

5. template <size_t BS> // Assume that BS is 16

7. __global__ void mv_gpu_3(float *b, const float *A, const float *x,

 8. const int numRows, const int numCols) {

9.

10. __shared__ float b_s[BS];

11. const int tx = threadIdx.x;

12. const int ty = threadIdx.y;

13. const int colStart = blockIdx.x * blockDim.x + tx;

14. const int rowStart = blockIdx.y * blockDim.y + ty;

15.

16. for (int r = rowStart; r < numRows; r += gridDim.y * blockDim.y) {

17. if (ty == 0)

18. b_s[tx] = 0;

19. __syncthreads();

20.

21. for (int c = colStart; c < numCols; c += gridDim.x * blockDim.x) {

22. atomicAdd(&b_s[ty], A[r * numCols + c] * x[c]);

23. __syncthreads();

24. }

25.

26. if (tx == 0)

27. atomicAdd(&b[r], b_s[ty]);

28. __syncthreads();

29. }

30. }

For each column of the following table, choose entries from the first row of that table that apply

to the kernel in question.

● The first column should contain only A-D, and the second column should contain only E-

J.

Name: ______________________________________

9

● Each box may contain 0, 1, or more than one letter.

(Hint) It might be more efficient to focus on one of (A)-(J) and determine if it is applicable to

mv_gpu_1 through mv_gpu_3 before moving to the next one.

could be fast because could be slow because

Possible
choices for
this column

(A) Coalesced memory accesses
to A
(B) numRows global memory
writes
(C) Many active threads if
numCols is large
(D) Many active threads if
numRows is large

(E) contention in shared memory atomics
(F) Barrier synchronization
(G) numRows & numCols global memory
writes
(H) redundant loads from X
(I) uncoalesced memory accesses to A
(J) contention in global memory atomics

mv_gpu_1

mv_gpu_2

mv_gpu_3

Question 4. Sparse Matrix Multiplication (10 points, suggested time allocation 25

minutes):

This question tests your knowledge of Sparse Matrix representation and operation. For your

convenience, we are enclosing an example that illustrates how a dense matrix is transferred to

the sparse matrix in ELL format. Recall that we take CSR, pad elements to make all rows of

equal length, and transpose the padded matrix.

Name: ______________________________________

10

Dense Matrix:

Sparse Matrix in ELL:

 num_elem = 3

 num_rows = 4

(A) (4 points) In the following ELL kernel, fill in the missing indexing expressions for accessing

data (input matrix), x (input vector) and y (output vector).

1. __global__ void SpMV_ELL (int num_rows, float *data, int *col_index, int

num_elem, float *x, float *y) {

2. int row = blockIdx.x * blockDim.x + threadIdx.x;

3. if (row < num_rows) {

4. float dot = 0;

5. for (int i = 0; i < num_elem; i++) {

6. dot += data[] * x[];

7. }

8. y[row] = dot;

9. }

10. }

row+i*num_rows

(B) (4 points) After we transform the matrix into ELL layout as the example shows, and launch

the kernel in (A), circle one answer for each question below and justify your choice.

(1) Is there any control divergence (assuming num_rows is a multiple of 32)?

Answer: Yes or No

Explanation:

11

Name: ______________________________________

(2) Is memory access coalesced?

Answer: Yes or No

Explanation:

(C) (2 points) State what the hybrid ELL-COO format is and give a situation when hybrid ELL-

COO method performs better than the ELL format

Name: ______________________________________

12

Question 5. Convolution Neural Network (15 points, suggested time allocation 15

minutes):

A basic convolution layer consists of filter W, input X and output Y. We want to accelerate the

forward propagation of convolution layers in the training process.

W is the convolution filter weight tensor, organized a tensor W[M, C, K, K], M is the number of

output feature maps, C is the number of input feature maps, K is the height and width of each

filter. Tensors are stored as multi-dimensional arrays in the memory.

X is the input feature map, organized as a tensor X[B, C, H, W], where B is the number of

images in one mini-batch (recall that mini-batch is used to efficiently updates gradients while

keeping relatively fast convergence), H is the height of each input feature map and W is the

width of each input feature map.

Y is the output feature map, organized as a tensor Y[B, M, H_out, W_out], where H_out = H-

K+1 is the height of each output feature map and W_out = W-k+1 is the width of each output

feature map.

(A) You first start with a naïve implementation for the first convolutional layer given that an

output feature map of H_out x W_out (28 * 28) can fit in one block (so that each thread is

processing one element in the output). You need to fill in the missing parts so that the

convolution layer is complete.

 // assume that the kernel will be launched with the following configuration
01: dim3 gridDim(B, M, C);

02: dim3 blockDim(W_out, H_out, 1);

03:

04: __global__ void convLayerForward_Naive(int C, int K, int W_out, int H_out,

 float* X, float* W, float* Y){

05: int b = ;

06: int m = ;

07: int c = ;

08: int h = ;

09: int w = ;

10:

11: float acc = 0;

12: for (int p = 0; p < K; p++) // KxK filter

13: for (int q = 0; q < K; q++)

14: acc += X[b, c, ,] * W[m, c, p, q];
15:

16: Y[b, m, h, w] = acc;

17: }

Name: ______________________________________

13

(B) You then find out that the x, y, z dimension in the thread blocks can be mapped

arbitrarily. Suppose now you change blockDim to blockDim(H_out, W_out, 1), which

line(s) in the kernel of part (1) need to be changed in order to be an correct

implementation?

New gridDim:

01: dim3 gridDim(B, M, C);

02: dim3 blockDim(H_out, W_out, 1);

Line(s) need to be changed (You may not need to fill in all the lines):

Line _______, change to: __.

Line _______, change to: __.

Line _______, change to: __.

Line _______, change to: __.

Line _______, change to: __.

(C) Comparing the kernel in part (2) to the kernel in part (1), would you expect the

performance of kernel in part (2) to increase, decrease or stay the same? Explain why.

Name: ______________________________________

14

Question 6. Scan (15 points, suggested time allocation, 25 minutes): You are a new hire at
a Parallelism for Cheap Inc. The company specialises in creating parallel algorithms for
machines with cheaper hardware. Your boss heard you took Applied Parallel Programming with
the Wen-Mei Hwu and wants you show your expertise. Your boss wants you to make some
changes to the Brent-Kung algorithm to further improve the efficiency of the hardware use.

You reason that you can further improve the execution efficiency by using fewer threads to do
more work. For example, instead of using 1024 threads in each block to process 2048 elements
in each section, you would like to use 64 threads in each block. To do this you break up the
work at each level of the reduction and post-scan steps into parts.

At each level, all threads in the block will process one part of their section of input elements
before moving onto the next part. For example, at the first level of the reduction tree, all 64
threads will process the first 128 elements (64 pairwise additions) as part 0. They will then move
to process the next 128 elements as part 1. So the threads will iterate through 16 parts for the
first level of the reduction tree.

(A) (5 Points) With 2048 elements in each section, about how many times more
computations will each thread be doing compared to a regular Brent-Kung thread on
average? Answer should be in the form 1 times, 5 times, 100 times etc. Explain for full
credit.

(B) (5 Points) Below is the skeleton code for implementing this strategy. The given code is
very similar to your MP. Fill in the missing conditionals and indexing to make the code
run as described in part A. Note that you may leave a blank empty if you feel nothing
should go there. No explanation is necessary.

01: #define BLOCK_SIZE 64

02: #define SECTION_SIZE 2048

03: __global__ void scan(float *input, float *output, int len) {

04: __shared__ float shared[SECTION_SIZE];

05: int bx = blockIdx.x;

06: int tx = threadIdx.x;

07: int i = bx * SECTION_SIZE + tx;

08:

09: for(int part = 0; part < SECTION_SIZE / BLOCK_SIZE; part++) {

10: if(i + part * BLOCK_SIZE < len)

11: shared[tx + part * BLOCK_SIZE] = input[i + part * BLOCK_SIZE];

12: else

13: shared[tx + part * BLOCK_SIZE] = 0;

14: }

15:

16: for(unsigned int stride = 1; stride < SECTION_SIZE; stride *= 2) {

17: __syncthreads();

18: for(int part = 0; part < ; part++){

19: int index = (tx+1+) * (stride *2) - 1 ;

Name: ______________________________________

15

20: if(index < SECTION_SIZE)

21: shared[index] = shared[index] + shared[index - stride];

22: }

23: }

24:

25: for(unsigned int stride = (SECTION_SIZE)/4; stride > 0; stride /= 2) {

26: __syncthreads();

27: for(int part = 0; part < ; part++){

28: int index = (tx+1+) * (stride *2) - 1 ;

29: if(index + stride < SECTION_SIZE)

30: shared[index + stride] = shared[index + stride] + shared[index];

31: }

32: }

33:

34: __syncthreads();

35: for(int part = 0; part < SECTION_SIZE / BLOCK_SIZE; part++){

36: if(i + part * BLOCK_SIZE < len)

37: output[i + part * BLOCK_SIZE] = shared[tx + part * BLOCK_SIZE];

38: }

39: }

16

Name: ______________________________________

(C) (5 Points) Does this strategy optimally use the hardware efficiently in terms of active
threads and control divergence? Explain why or why not. If it does not, how could you
improve the strategy? Your answer must begin with yes or no followed by an
explanation.

17

Name: ______________________________________

