
ZJU-UIUC Institute
First Exam, ECE 408

Tuesday 9 April 2019

 Be sure that your exam booklet has EIGHT pages.

 Write your name and Student ID on the first page.

 Do not tear the exam apart.

 This is a closed book exam. You may not use a calculator.

 You are allowed one handwritten A4 sheet of notes (both sides).

 Absolutely no interaction between students is allowed.

 Show all work, and clearly indicate any assumptions that you make.

 Don’t panic, and good luck!

Problem 1 28 points _______________________________

Problem 2 30 points _______________________________

Problem 3 42 points _______________________________

Total 100 points _______________________________

Name (pinyin and Hanzi):

Student ID:

2

Problem 1 (28 points): Short Answer Questions

1. (4 points) Consider the problem of dithering. Given an image in which pixels are encoded using a large

number of colors (say 24-bit RGB), the goal is to recolor each pixel using a smaller number of colors
(called the palette, with perhaps 256 colors) in such a way that humans continue to perceive the original
image.

A popular sequential dithering algorithm (Floyd-Steinberg) works as follows: starting with the upper-left
pixel, choose the palette color that is ‘closest’ to the original RGB color, calculate the difference
between these two colors as an error vector, and linearly spread the error vector amongst pixels to the
right and below the current pixel (about ½ of the error goes to the pixel to the right, and the remainder
goes to pixels in the next row below the current pixel). Continue to the right across the current row,
adjusting RGB values using error information, selecting palette colors, calculating error vectors, and
spreading them across pixels to the right and below. When one row is done, proceed to the leftmost
pixel in the next row down, until the entire image has been dithered.

Is this algorithm more suitable to a CPU or a GPU? Explain your answer.

2. (4 points) Prof. Lumetta wants to push his autograding technology to new levels and plans to make use
of GPUs to accelerate the computation. When grading an assignment, correct answers are easy to verify,
but incorrect answers require much more work: classification of the students’ error, mapping to the
rubric for the problem, and assignment of partial credit. Prof. Lumetta plans to assign one warp of GPU
threads to each student to avoid control divergence. What other high-level challenge with parallel
execution might be an issue for Prof. Lumetta’s approach? Explain your answer.

3. (4 points) A friend is trying to map a linear filter onto GPUs. The friend has written the code below to

compute N_d based on M_d, but N_d always seems to be filled with 0s after the kernel finishes
executing.

cudaMalloc ((void **)&M_d, 1048576 * sizeof (float));
cudaMalloc ((void **)&N_d, 1048676 * sizeof (float));

// Read from input file f into M_d.
fread (M_d, sizeof (float), 1048576, f);

executeKernel<<<1024, 1024>>> (M_d, N_d, 1048576);

// Make use of N_d.
// ...

Explain what your friend is doing wrong.

3

Problem 1, continued:

4. (4 points) A friend in ECE408 is having problems calculating the coordinate values for his 3D voxel

input data from the thread and block indices of the CUDA threads. Each thread operates on one voxel
from the input V. Your friend has launched the kernel as follows:

dim3 one (10, 20, 15);
dim3 two (18, 12, 24);
doMyKernel<<<one, two>>> (V, Q);

The X, Y, and Z dimensions of the thread blocks are aligned with the X, Y, and Z dimensions of the
original input array V. Write CUDA expressions to calculate the three coordinates within V as a function
of the gridDim, blockDim, blockIdx, and threadIdx variables provided to each thread.

x = ___ ;

y = ___ ;

z = ___ ;

5. (4 points) In question 3, the voxel array V is organized as a 3-dimensional array using the standard C

approach. In particular, as a 3D array, it would appear as [Z size][Y size][X size]. As is often
the case in CUDA code, however, V is instead simply a pointer to a single voxel. Use the variables x, y,
and z that you calculated in question 3 along with information in the kernel launch parameters to
compute an index into V for the given thread (you need not perform the multiplications yourself—just
write them as C expressions):

V_index = ___ ;

6. (4 points) Recall the forward computation process for a CNN, and in particular the computation of

subsampled/pooled results by averaging over N×N tiles of the convolution output Y before applying the
sigmoid function.

Explain why a GPU kernel that couples calculation of Y with subsampling is likely to produce better
performance than is possible using two separate GPU kernels executed in sequence.

7. (4 points) Explain why the sign function (sign(x) = 1 for x > 0, sign (0) = 0, and sign (x) = -1 for x < 0)

is not used with DNNs.

4

Problem 2 (30 points): Operating on Vectors

A friend comes to you for advice about GPU programming. The friend needs to calculate a function F on
each of N points in a three-dimensional dataset. A point has X, Y, and Z coordinates, and each point is used
only once (to calculate the function for that point).

1. (4 points) Your friend first asks: is it better to organize the dataset as float data[N][3] or as

float data[3][N]? Explain your answer.

2. (2 points) Each SM in your friend’s GPU supports up to 1,024 threads and up to 4 thread blocks. How

many threads per block are needed to maximize use of both resources? Show your work.

3. (4 points) Assuming the thread block size that you gave in part (2) above, how many warps will

experience control divergence, assuming that N = 2,000 and that warp size is 32. Explain your answer.

4. (2 points) Your friend is considering buying a new GPU in which each SM supports up to 1,536 threads

and up to 8 thread blocks. How many threads per block are needed to maximize use of both resources?
Show your work.

5. (2 points) Assuming the thread block size that you gave in part (4) above, how many total threads will

be launched if N = 1,000? Show your work.

5

Problem 2, continued:

6. (4 points) Can you help your friend to write code that operates effectively on both GPUs, or does your

friend need to modify the code after purchasing the new GPU? If you can help, explain how.

7. (4 points) Your friend’s GPU offers a peak computational performance of 1.28 TFLOPs (1.28×1012

single-precision floating-point operations per second) and has a memory bandwidth of 160 GB/s.
Assuming that both resources are used with perfect efficiency, how many floating-point operations are
needed to calculate F for one point in order to maximize use of both resources. Show your work.

8. (8 points) Your friend has started to write the GPU code, but has made a couple of mistakes. Correct the
code and write the kernel launch using the block size that you gave in part (4) on the previous page.

// data array of N 3-d points (float*) already populated
// result array of N function values (float*) already allocated
float* data_d; // data in GPU memory
float* result_d; // result in GPU memory

// allocate space for data and result in GPU memory
cudaMalloc ((void**) &data_d, sizeof (float) * N * 3);
cudaMalloc ((void**) &result_d, sizeof (float) * N);

// copy into GPU memory
memcpy (data_d, data, sizeof (float) * N * 3);

// what else goes here? CUDA is so confusing!
theKernel

// copy results back to host memory
memcpy (result, result_d, sizeof (float) * N);

// later in the file, the kernel ... parameters needed?
int
theKernel
{
 // assume that this code has been written correctly
}

6

Problem 3 (42 points): Convoluted Code

At your first internship, you are asked to complete a former co-worker’s 2D convolution code. The
application for which this code is being written convolves a mask with an input P and a second mask with an
input Q, then adds the two convolutions together to produce the final result. P and Q both have dimension
(y_dim × x_dim), as does the result, and the two masks are defined by the code. Both masks have the
same size. In the convolutions, values beyond the boundaries of P and Q should be treated as 0.

The code should use “strategy 2,” in which all threads load an input tile to shared memory and a subset of
threads compute the output.

1. (4 points) Fill in the input tile size definitions (see “(1)” in the code below).

#define OUT_TILE_X 8
#define OUT_TILE_Y 8
#define MASK_X 5
#define MASK_Y 7

#define IN_TILE_X __ // (1)

#define IN_TILE_Y __ // (1)

__constant__ float mask_P[MASK_Y][MASK_X];
__constant__ float mask_Q[MASK_Y][MASK_X];

__global__
void sumOfConv (float* P, float* Q, float* result,
 const int y_dim, const int x_dim)
{
 __shared__ tile_P[IN_TILE_Y][IN_TILE_X];
 __shared__ tile_Q[IN_TILE_Y][IN_TILE_X];

 int tx = threadIdx.x, ty = threadIdx.y;
 int bx = blockIdx.x, by = blockIdx.y;

 int x_out = bx * OUT_TILE_X + tx, x_in = x_out – MASK_X / 2;
 int y_out = by * OUT_TILE_Y + ty, y_in = y_out – MASK_Y / 2;

 // (2): Is the tile-reading code correct?
 __syncthreads ();
 tile_P[ty][tx] = P[y_in * grimDim.x * OUT_TILE_X + x_in];
 __syncthreads ();
 tile_Q[ty][tx] = Q[y_in * gridDim.x * OUT_TILE_X + x_in];
 __syncthreads ();

 float sum = 0.0f;
 // (3): Which threads should compute a sum?
 for (int ym = 0; MASK_Y > ym; ym++) {
 for (int xm = 0; MASK_X > xm; xm++) {
 sum += mask_P[ym][xm] * tile_P[ty + ym][tx + xm];
 sum += mask_Q[ym][xm] * tile_Q[ty + ym][tx + xm];
 }
 }

 // (4): Need to synchronize here?

 // (5): Which threads should write output?
 res[y_out * x_dim + x_out] = sum;
}

7

Problem 3, continued:

2. (10 points) Rewrite the block of code to read the two tiles into shared memory so that it works correctly

and with minimal synchronization (see “(2)” in the code).

3. (4 points) Should all threads in a block compute a sum? If not, write an if condition that can be used to
wrap the summation (convolution) code (see “(3)” in the code).

4. (4 points) Do threads in a block need to synchronize after computing the convolution (see “(4)” in the
code)? Explain your answer.

5. (4 points) Should all threads write a value back to result? If not, write an if condition that can be

used to wrap the global memory write operation (see “(5)” in the code). If your condition should
include the condition that you gave for part (3) above, you may simply write “CONDITION (3)”
instead of writing that part of the condition again, but be sure to connect it with an appropriate C
operator.

8

Problem 3, continued:

6. (6 points) On average across the tile, how many times is each element of mask_P read during the
computation of the convolution? No need to calculate a decimal value—just write the appropriate
fraction. Show your work.

7. (6 points) Using the defined constants from the code and the input dimensions y_dim × x_dim), write
code to dimension the grid and blocks for the kernel launch below.

sumOfConv<<dimGrid, dimBlock>> (P_d, Q_d, result_d, y_dim, x_dim);

8. (4 points) Your manager finds that while your code produces the correct results, its performance is

limited by the shared memory available in the company’s GPUs. Can you suggest a modification to
improve the performance? Hint: You will not earn credit for saying that the company should use a
single convolution and add the two results afterward.

