ECE 120: Introduction to Computing
Fall 2023 — Final Exam

Friday, December 8", 2023

Answer KEY

e Ensure that your exam booklet has 19 pages.

Write your NAME and UIN clearly in the boxes below.

e Do not tear the exam booklet apart. You can only detach the last page for scratch
work if needed.

e This is a closed book/notes exam. You may use a calculator.

You are allowed one handwritten sheet of notes (both sides). Write your name

on the cheat sheet. The cheat sheet will be collected at the end of your exam.

Absolutely no interaction between students is allowed.

Indicate any assumptions that you make.

The questions are not weighted equally. Budget your time accordingly.

Show your work and write legibly. Solutions in illegible handwriting will be

graded as incorrect.

e Write your UIN (9-digit #) in the provided space on each page.

NAME UIN

Problem 1 10 points
Problem 2 15 points
Problem 3 15 points
Problem 4 15 points
Problem 5 26 points

Problem 6 08 points

Problem 7 11 points

Total 100 points

UIN

Problem 1 (10 points): Binary Representation and Operations

1. (3 points) a) What is the minimum number of bits required to encode a character set
consisting of 129 symbols?

Answer:

b) How many additional symbols, if any, can be encoded with your answer to part (a)?

Answer:

2. (4 points) The 7-bit pattern x74 represents what value in each of the following
representations?

ASCI!I:

Unsigned (write answer in decimal):

2’s complement (write answer in decimal):

3. (3 points) Prove that the set of Boolean functions {OR, NOT} is logically complete.

UIN

1. (3 points) a) What is the minimum number of bits required to encode a character set
consisting of 129 symbols?

@ Answer: 8 bits

b) How many additional symbols, if any, can be encoded with your answer to part (a)?

@ Answer: (27 S i
"3

2. (4 points) The 7-bit pattern x74 represents what value in each of the following
representations?

@ ASCII: 't (/eowev ca\;e,)

@ Unsigned (write answer in decimal): / I é
@ 2’s complement (write answer in decimal): el

3. (3 points) Prove that the set of Boolean functions {OR, NOT} is logically complete.
(DA.\V\— b4 AOR gotes con ke builf woiile ows
@ n-bit OR gote foldowed by a AOT gete.

@ @ Simce {NOR} is ﬂﬂj;c"t% &o\mr/ee,{e,

{ok,NOT} 's akso ﬂ:ﬂl‘ca% Cowsrw(ﬂ.te,

Note: Tf stodewment W~ @ S ot cOm\:ﬁete, @

UIN

Problem 2 (15 points): Combinational Logic

1. Shown on the right is a combinational circuit that a; ap by bo
adds two 2-bit numbers, aiao and bibg, and outputs l l l l
the sum bits s1So and the carry bit c».

Cy < 2-bit adder

'y

S1 So
a. (4 points) Fill in the K-map for c2 below.
C2 b1bo So b1bo
00 01 11 10 060 01 11 10
00 o 0110
01 0| 10|01
aiao aiao
1 111,001
10 wf0|21|1]0

b. (3 points) Based on the K-map to the right above, write a Boolean expression for so in POS
form. Show corresponding loops on the K-map.

So =

c. (3 points) Implement the circuit to calculate so as a two-level network using only one type
of gate. You can assume that inverted inputs are available.

UIN

Problem 2, continued

2. (5 points) Using two copies of the combinational circuit from Part 1 as building blocks and
as few additional gates as possible, design a combinational circuit that subtracts two 2-bit 2’s
complement numbers, p1po and gigo. The circuit should output the difference bits

dido = p1po - 9100

P44y !

d; do bl bO d1 dg b1 bo
<+—Cy 2-bit adder <+—C 2-bit adder
S1 So S1 So

'y !

UIN

a. (4 points) Fill in the K-map for ¢, below.

s biby 59 biby
00 01 11 10 00 o0l 11 10
EDfreach ™| 0|o |00 w 0/ 11N
meevvect o1 01—1/ N 1 T~
Row ajap > © O :L 0 adp 1 16— 0 l
ottt u 1({ojo)1
0o olo 1|1 o N 1|14
‘ U
Sy blbﬂ
0 o1 11 10
00 y 1|1 QT
» aT 1 ’(6‘—0\ 1™
no1jlojojtl
107}\\1 1‘/5

1

@D fov expression (&) for kmep

so=__ (2 tha) laotbo)

@ TWMR X ok imf‘(m{ﬂ‘(w«gﬁ"\

(D fw):‘lwf’ o alss Gosweek

(D foriae s - s,
bojD'

UIN

P Po ’/70,0
e e

d; dg b1 bo dq1 do b1 bo
<+—Cy 2-bit adder <— C; 2-bit adder
S1 Sg S1 Sp

i‘ Yy

(You should not need to write below this line.)

| vy a ol

Bt (D) for ~0%) s S A
@ For hF)+ %) bt 448 s g0
@ F”“f [abOIS [d!,do) e;}c,) With :_’7

UIN

Problem 3: FSM Design Problem (15 points)

Your part-time employer Professor Zapper from Psychology asks you to design the logic for an
experiment to study the memory of rats. The experimental setup is shown below. In each "cycle,"
the experimenter turns the alarm on or off. Your system receives a signal from the audio sensor A:
when the alarm is on, A = 1. In the same "cycle" (long cycles), the rat responds by either depressing
the lever L (in which case L = 1) or not depressing the lever (L = 0).

Professor Zapper wants the rats to follow a protocol. In the first and second cycles, the rat should
not match the lever with the alarm. In other words, the rat should press the lever when the alarm
is off, and not press the lever when the alarm is on. In the third cycle, the rat should match the
alarm: press the lever when the alarm is on, and don't press the lever when the alarm is off.

If the rat succeeds in this endeavor, it should receive food (set F = 1 for a cycle). If it fails, it should
immediately be zapped for a cycle (set Z = 1 for a cycle). After the penalty/reward cycle, start
over.

I'| H“—-H_h

\ >
Alarm |/ 7

~ Audio sensor
o A
food
dispenser

T—J lever L ’g\

— =" ™ (_\;PPEI
' h\ z

Designing the FSM:
We can make one crucial observation to simplify the design. We can introduce a variable T such
that when rat's action is in accordance with the alarm, T=1. This is the case when

A L T
0O 0 1
0 1 0
1 0 O
1 1 1

Thus, T = NOT (A XOR L)

UIN

1. (4 points) Based on this description, design a finite state machine to implement the desired
experimental protocol. In particular, draw a complete state transition diagram labeled with
input, internal state bits, and outputs. For your convenience, the partial state diagram is given
to you. Complete the state diagram showing necessary transitions, inputs, and output. Hint:
from every state, there will be two possible transitions.

State = 5150

Input=T T

Output =FZ

F = 1, Food dispensd

Z =1, Rat is zapped

01/00

“cycle 2”

A side effect of the above implementation is that when the experiment starts, the rat is zapped at
first

UIN

1. (6 points) Find simple logical expressions (minimal SOP) for next-state variables as well as
functions mapping your internal state values to the outputs F and Z.

Next State Table
S1 So T Sit Sot F Z

2. (5 points) Implement the FSM by drawing a logic schematic circuit diagram for your
system.

10

input

State = $:5o
Input=T

Output = FZ

F =1, Food dispensd

Z=1, Ratis zapped

11

UIN

in COYKCC+
1‘—mms.‘hbh/ta,bef

UIN

Next State Table

51 S T

o
—

o
=

F Z _
o o0 0 0 1 0 1]:_-_-5150
' s 0o 1 6 0 O o
Aloireit |t 2o 2 = 5%
Z o 1 1 0 O o o0
g | 0 o o ((0
& 9 | 0o ° | o0
¢ 1 I 6 0 0 oo
? | I D R | 000

_ .
E | o [1
\L I (I

J
ST:gisﬁ*sxScT 5t = ;T—‘r ST
_ 0@
otk Table @ (-0'5) eve?y incoscec] R
froth @00

rot
("“) th‘v){ In (’Ob’i’?("l(6[R 6.5

(—0'}’5) eve”y ncossed F, 2

bagecl
< Note: s} sl F 2 ghouwld Le

on student’s fable, which
conld be wzong/lncesceef -

12

13

UIN

v?asb{((’f

(—1() fos cver/

"
jmfl«em<n+q+savx o) Si,

/

Foz, T

UIN

Problem 4 (15 points): LC-3 Interpretation and Assembly

1. The program below consists of LC-3 instructions and data.
x3000 0010 0110 0000 1011 11D R3, #11

x3001 0101 1011 0110 000OC

x3002 0110 1100 1100 0000

x3003 0000 0110 0000 0011

x3004 1001 1001 1011 1111

x3005 0001 1101 0010 0001

x3006 0111 1100 1100 0000

x3007 0001 0110 1110 0001

x3008 0001 1011 0110 0001 ADD R5, R5, #1

x3009 0001 1101 0111 1000

x300A 0000 1001 1111 0111

x300B 1111 0000 0010 0101

x300C 1111 0000 0000 0000 FILL .xFOOO

a. (9 points) Decode the remaining instructions in the program above into LC-3 assembly
language using the format shown in those already done for you. Note that all blanks
correspond to instructions, not data.

b. (4 points) In twenty words or less, explain what the program does.

14

UIN

Problem 4, continued:

2. (2 points) The following program has exactly one error. State the nature of the error, in
which pass the assembler identifies the error (first or second), and suggest how the program
can be corrected.

.ORIG %3000

LEA RO, STRING
FIND

LDR R1,R0, #0

BRn DONE

ADD RO, RO, #1

BRnzp FIND
STRING .BLKW x1000
EOS .FILL xFFFF
DONE HALT

.END

Answer (use no more than 20 words):

15

UIN

(—1) Fex eVRITY .
ineowss €k c).e_coc(?l‘“ﬁ

1. The program below consists of LC-3 instructions and data. -
progr i < max 2

%3000 0010 0110 0000 1011 LD R3, #11

x3001 0101 1011 0110 0000 7?‘/}@ ‘ZS’, 4 g\/‘ﬂa
%3002 0110 11dp 11po 0000 2P QQi Q;/ Ho
%3003 0000 0110 0000 0011 B /4 2p H*H >
x3004 1001 1oo}1 10\11 1111 /\/9(QH; e
%3005 0001 110 0010 0001 ;4% KG; (L(’ #4 - !Zé
x3006 0111 110‘0 1{00 0000 STe RC K3 Ho
/ b 4
x3007 0001 011\0 11010 o001 H ey L3 3 R%/ H4

x3008 0001 1011 C110 0001 ADD R5, R5, #1

%3009 0001 1141 o:{il 1000 H-DB- (&63/ Kg/ jfr‘y

= e
x300A 0000 1ooh 1111 0111 @ Q% H-9 o
x300B 1111 0000 0010 0101 }{41(, ~

x300C 1111 0000 0000 000C FILL .xF00O

b. (4 points) In twenty words or less, explain what the program does.

‘Reod an ﬂx‘p’b’a\/ aj e’;’jk‘f mw-{?/ [GGJ(IU*‘\S I
fsom « FI00 . mvest +he nw

and o7 e teov o TRRIY CozéegFoo\J(v:j .

_ l.O c a&fh 1/
Problem 4, continued:
2. (2 points) The following program has exactly one error. State the nature of the error, in

which pass the assembler identifies the error (first or second), and suggest how the program
can be corrected.

(4
LORIG %3000 Tf some (e

LEA RO,STRING

LDR R1,R02_0_’___/ E¥Y 0‘6 ('lw "‘5 ﬂa{

BRn DONE

ADD RO,RO, #1 ‘f‘wé IS ez 5ou¢ref

BRnzp FIND

FIND

STRING .BLKW x1000 .
. M) { Co TE ec’)’
EOS .FILL xFFFF 26 CY also
DONE HALT 0." < ? 1S
.END

Answer (use no more than 20 words):

$%0% - | pcosIoetT
0uf of rvargce < et of| »ange

1t assembles Ldentifres tie
epv oD ;r\ e secovxc& P&S.S

16

UIN

Problem 5 (26 points)
In this problem we introduce a new instruction to the LC3 instruction set, called ADDM: Add to
Memory.

ADDM DR, SR1, SR2
ADDM adds the content of the source register SR2 and the content of the memory location
whose address is in register SR1, and puts the result in register DR. ADDM has opcode 1101
and the RTL is:

DR € M[SR1] + SR2, setCC
1. (4 points) Give the binary encoding of the instruction ADDM R3, R4, R5 by filling in the

missing bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0/0]0

2. (2 points) Statement: “If we set the 5" bit to 1 (IR[5]=1) when encoding the ADDM
instruction, it won’t work as expected."

Is this statement True or False? Justify your choice with reference to SR2ZMUX.

True, because

False, because

3. (8 points) Give the sequence of 4 microinstructions that implement the ADDM instruction
after the decode state. If needed, you may use R6 as a temporary register.

Answer:

4. (8 points) Determine the control ROM microinstructions that implement the RTL statements
from part (a). Complete the table below by filling in 0, 1, or x as appropriate. Specify ROM
addresses in decimal. Note that your first state number is implied by the decode strategy used
in the LC-3 microarchitecture. State numbers 51, 52, 53, and 54 are available as additional
states for your use.

17

UIN

ROM address in

decimal

m é D
,\'?2 g gm X@§§@§A
28 | s 558,080 (29303588328
c |88 |83 |qocccoo EEf2/3388 2§ 3
= ONS) = 4133333 0000 |2a < < 0O n <

MIO.EN
R.W

Do not fill in datapath control word fields for these two

microinstructions. But be sure to fill in the remaining two.

5. (4 points) Draw the state diagram for ADDM after the decode state with the arc labels as
needed, the RTLs mentioned in the states, and include the state numbers in the boxes
provided. State numbers 51, 52, 53 and 54 are available as additional states for your use. Hint:
your answer should be consistent with the simplified Patt and Patel microsequencer circuit
attached to this booklet.

Note: 5110= 1100112 5210= 1101002, 5310= 1101012, 5410= 1101102

000

UIN

NS U,

oP(oée - 41

65 14 13 121 10 9 8 7 6 5 4 3 2 1 0
t[o[r]efr[v][vfalofo]ofof s | 2y + 1

16 4 oP-e‘/a\hdé AT = mce-pvfc{' B4 - ¥
bad mig?‘acf-d (.—5) Rg £

Is this statement True or False? Justify your choice with reference to SR2ZMUX. L _f _}r_

ue, because IR tSJ |\nu.5-j bP 2¢€~¥o S e :
SRZ (¢ 25-) S 5€I€C1Qd !77 1Ze ﬂZMUK

False, because

3. (8 points) Give the sequence of 4 microinstructions that implement the ADDM instruction
after the decode state. If needed, you may use R6 as a temperary register.
Answer: MﬁR < .RT]R [g""gjj) MhKé— R4
mMpR <« M[MAR]

R6 <« MDR
RORDA] « Re t g2 9] 5 R < Rg

+ X5

‘Fag GVQ'SV
k= @ ® ><§ (h(
@ o 2 —_
& = = = A 22 adg o
4 @ a o
= a2 | 2 Bzo |EZEZ23xa i j"w‘F
iz 8 |= fso.u3g|555|25 2823 ¢ |4 |n co¥Fes
S ENEERE: SiZcsac|2828|22EE8z2 %2 3|¢e3 1RD
Z23| &8 |CC |[=a AdA23233 | O0U00 |28 €< < 0 v < |2 gom “ngss,
120000/ 110(Q0]0|t{0[0[0]a|0[0[c]| I[6]X [x¥| X [*]xx 0111 |0 ¥ -e J¢C) and
G20 | oot |j1o100 |o/ofi|eo|ola|o|e|o]o]x |xx|x |xx|xr|«x|xx[i |0 COHD(S)J ,
Do not fill in datapath control word fields for these two . UPSs
G4 |0 | scaliloorly Do not il in datap . e confzol g.grﬁa‘ g¥o]’)
55 5\ O |oce (00010 microinstructions. But be sure to fill in the remaining two.
N0 Q| (qfsq epsect)
- ~
2 g o ; x —
s | «xa=2=2a84d
.z =~ jaga) =) —~
- oz |2 z%Z% = Q«EQBU Ex%ég%d z _F
s E 22 |3 2252825225522 82 3 2 ¥ |5 Coss€C
23l2 |86 |25 SRancocc | 22%2|=2 22z =2 |88 é__,A[SO
3|2 |TO =3 S223322|00%8 |2 f 2 0 ¥ < | =
12 | o] ceoliioianlfa]t]|e]olela]o|i|olo]o]|t x| oo]x<|of|rr|e]x
52| 0 |2l |[jfo(00|o|o|il|o|e|e|e|d|a|a|o]| x| <]« xx|wx|xx|xx|{ [0
g4 | 6 | goa|g1 00/ Do not fill in datapath control word fields for these two
53 5| O |lecao|Gi00 (0 \ microinstructions. But be sure to [ill in the remaining two.

L; o6 o)

19

13

MAR « R4

¢

52

MDR <« MAR

54

Re <« MDR

51

2 <« R¢tKs

18

0¥ 53

20

UIN

Cﬁ_ l) Po‘m-(
ro¥ eve*)

(N c'o-;;\rt'c.'“'

é"'ﬁ‘(‘(No.

UIN

Problem 6 (8 points): LC-3 Assembly Programming

Shown below is an incomplete LC-3 assembly program that computes the sum of the squares of a
list of positive integers, stored in consecutive memory locations starting at address x5000. A zero
or a negative number indicates the end of the list of integers. The result is saved to memory address
x6000. Write the missing lines of code. You must write only one instruction per missing line.
To receive credit, you can only use registers RO, R1, R2, R3, R4, and no other register.

LINE PROGRAM

1 ; Store program in location x3000

2

3 ; RO stores the address of the list, 0x5000
4 LD RO, NUM LIST

5 ; Initialize the sum in R1 to zero

6

7 | SUM_LOOP ; Load current number from the list to R2
8

9 ; Exit if the number is negative or zero
10 BR_____ END LOOP

11 ; Clear R3 to store the square result

12 AND R3, R3, #0

13 ; Copy the current number to R4

14 ADD R4, R2, #0

15 | MULT LOOP ; The loop calculates the square of R4

16

17 ADD R2, R2, #-1

18 ; Repeat inner loop to calculate the square
19 BR
20 ; Add the calculated square R3 to the sum
21 ADD R1, R1, R3
22 ; Move to the next number in the list
23 ADD RO, RO, #1
24 BR SUM LOOP
25 | END_LOOP ; Store the sum at x6000
26
27 HALT
28 | ; Memory address of the number list
29 | NUM_LIST

30 | ; Memory address to store the result

31 | RESULT LFILL x6000

21

UIN

.END

@Foa’ evesy h*aé’oﬁfe:"’ ms{'zmcﬁb”l

LINE PROGRAM
; Store program in location x3000
1
.ORIG x3000
2
; RO stores the address of the 1list, 0x5000
3
LD RO, NUM LIST
p _
;7 Initialize the sum in R1 to zero
5
AND R1, R1, #0
6
SUM LOOP ; Load current number from the list te R2
9 =
IDR R2, RO, #0
8
; Exit if the number is negative or zero
9
10 BRnz END LOOP
; Clear R3 to store the square result
11
AND R3, R3, #0
12
13 ; Copy the current number to R4
14 ADD R4, R2, #0
15 MULT _LOOP ; The loop calculates the square of R4
16 ADD R3, R3, R4
ADD R2, R2, #-1
17
18 ; Repeat inner loop to calculate the square
BRp MULT LOOP
19 -
; Add the calculated square to the sum
20
ADD R1, R1, R3
21
; Move to the next number in the list
22
ADD RO, RO, #1
23
BR SUM LOOP
24 -
END LOOP ; Store the sum at x6000
25 -
STI R1, RESULT
26
HALT
27
; Memory address of the number list
28
- NUM LIST .FILL x5000
; Memory address to store the result
30
- RESULT LFILL %6000
.END

22

UIN

Problem 7 (11 points): LC-3 Assembly Analysis
You are given the following program written in LC-3 assembly language.

.ORIG x3000
LEA R1l, INPUT
LEA R2, MASK
LDR R3, R2, #0
NOT R2, R2
ADD R2, R2, #1
AND R4, R4, #0
OUTER_LOOP LDR RO, R1, #0
AND R5, R5, #0
ADD R5, R5, #15
INNER LOOP AND R6, RO, R3
BRz SKIP ADD
ADD R4, R4, #1
SKIP_ADD ADD RO, RO, RO
ADD R5, R5, #-1
BRzp INNER LOOP
ADD R1, R1, #1
ADD R6, R1, R2
BRn OUTER_LOOP

ST R4, RESULT
HALT
INPUT .FILL x1248
.FILL x2814
.FILL x4821
MASK .FILL x8000
RESULT .BLKW #1
.END

1. (5 points) For each label in the table below, fill in its memory address and the number of
times the LC-3 reads from that memory address during the execution of the entire program.
Count only memory reads, not writes.

Memory Address Number of Memory Reads

Label (4-digit hexadecimal value) (decimal number)

OUTER_LOOP

INNER_LOOP

SKIP_ADD

INPUT

MASK

2. (6 points) Write the 4-digit hexadecimal values held in the following registers/memory
when the program halts. Assume that HALT does not modify any registers.

23

UIN

(5 points) For each label in the table below, fill in its memory address and the
number of times the LC-3 reads from that memory address during the execution
of the entire program. Count only memory reads, not writes.

Label) Memow Ad_dress Number ?f Memory Reads
(4-digit hexadecimal value) (decimal number)
OUTER_LOOP | x3006 3
INNER_LOOCP | x3009 48
SKIP_ADD [x300c 48
INPUT x3014 1
MASK x3017 1

60.5) Fos @©uRBY Incexrect pLeme”f
add!ess

L)
C’O'9> Fey ev<*y incayxcck NO- y
P1€ mo ¥ ‘4-?4.0‘-'

M[x300C] = M[x300E] = M[x3018] =

(6 points) Write the 4-digit hexadecimal values held in the following
registers/memory when the program halts. Assume that HALT does not modify

any registers.

R1=_ x3017 R2=__ xCFE9 R4=__ x000C

M[x300C] = _x1000_ M[x300E] = _xO7FA___ M[x3018]=__ x000C___

(,') Fo¥ eved Y (ﬂCcSXASCC)L O\hswex

24

