
UIN--------------------

1

ECE 120: Introduction to Computing

● Ensure that your exam booklet has 15 pages.
● Please, write your NAME, NetID, and UIN clearly.
● Do not tear the exam booklet apart. You can only detach the last two pages,

(ASCII Table and scratch paper) if needed.
● This is a closed book/notes exam. You may use a calculator.
● You are allowed one handwritten sheet of notes (both sides). Write your name

on the cheat sheet. The cheat sheet will be collected at the end of your exam.
● Absolutely no interaction between students is allowed.
● Clearly indicate any assumptions that you make.
● The questions are not weighted equally. Budget your time accordingly.
● Show your work and write legibly. Solutions in illegible handwriting will be

graded as incorrect.
● Write your UIN (9-digit #) on each page in the provided space.

Problem 1 20 points ___________

Problem 2 20 points ___________

Problem 3 25 points ___________

Problem 4 14 points ___________

Problem 5 21 points ___________

Total 100 points ___________

NAME

UIN NetID

UIN--------------------

2

Problem 1 (16+4 = 20 points): Serialization

Shown below is a serialized implementation of a power-of-2 checker that checks whether an
unsigned integer A=an-1an-2..a1a0 is a power of 2. The bits are fed serially from LSB to MSB.

Also, available is the signal F that is 1 when a0 is being processed and 0 otherwise. One clock

cycle after ai is input, the output S1S0 has the meaning shown in the table below.

Interpret this circuit as a finite-state machine and complete the following state-transition table.

Write down the S1+ and S0+ expressions below:

S1S0 Meaning
 0 0 Have not seen any 1s so far

 0 1 Seen only one ‘1’ so far

 1 0 Seen more than one ‘1’ so far

 1 1 Unused

S1 S0 F ai S1+ S0+

 0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Power of 2

UIN--------------------

3

Problem 2 (20 points): Sequence Recognizer

In this question, you are going to work with a sequence different from the familiar 0-1 sequence.
Your goal is to recognize the pattern “ece” from a random input sequence made up of “e”,”c”
and “b” (Note: Only these three letters will show up).

An example for the FSM is shown below.

Input: x = e c e c e e c e b e . .

Output: R = 0 0 1 0 1 0 0 1 0 0 .
.

Note: Overlapping instances are counted as shown in the
example. The output sequence is delayed by 1 clock cycle
compared to the input sequence because the output R is a function of the flip-flop outputs (i.e.
the state variables) in a Moore machine. That's why the output sequence becomes 1 in the
cycle after "ece" has been recognized by the input.

1. (3 points) The first thing you need to do is to define the states for your FSM. We will
assume that the FSM starts in state S1S0=00, and each state has the output R indicating
if the pattern “ece” has been found (1 for found and 0 for not found). We will also use “x”
(representing letters) to label the transitions between the states.

States (S1S0) Output (R) State Meanings

00 0 Starting state

01

10

11

2. (12 points) Next, fill the state transition table.

(Note: S1 and S0 represent the current state and S1
+ and S0

+ represent the next state)

S1
+ S0

+ b c e S1 S0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

1 0 0 1 1

0 1 0 1 1

0 0 1 1 1

FSM Notation

S1S0

/R

UIN--------------------

4

3. (5 points) Finally, it is time to draw your FSM design! While we have prepared a version

for you, it only shows some of the transitions and the labels for those transitions are

missing. Therefore, your task is to

(1) Write the missing labels of the given transitions and, (2) complete the missing

transitions. Also, for different values of “x” for the same transition, you should

write them together on a single arrow like: , where x1 and x2 are

different letters.

UIN--------------------

5

Problem 3 (25 points) FSM Design

Problem statement: Given your knowledge of ECE120, you have been hired as a hardware

engineer in a very lucrative company. Your first assignment is to design an FSM to implement

the following C code fragment that calculates the sum of a set of 10 integers (stored in an array

defined as values[]).

int values[10];

int idx ;

int sum = 0;

for (idx = 0 ; 10 > idx; idx = idx + 1)

{

 if (values[idx] > 0) {

 sum = sum + values[idx];

 }

}

Given the available components, your project teammates have already selected a datapath (as

shown in Fig. 2). A brief description of each element in the datapath is given on the last page as

an appendix. Note that the datapath uses a 32-bit serial adder to add two integer values, during

the calculation of “sum = sum + values[idx]”. Your goal is to design the FSM controller that

generates the necessary control signals for the datapath to produce the expected

functionality.

Figure 1 flow chart of the given C code

Figure 2 Datapath

BEGIN

UIN--------------------

6

Given the datapath and the flow chart, the first step of the FSM controller design process is to

convert the flow chart of the program into its state diagram that can be realizable by the chosen

datapath. Your teammates have gone back and forth between the components and the FSM,

grouping the flowchart boxes as shown in Fig. 3(a) yielding the state diagram of the desired FSM

controller as shown in 3(b).

Figure 3(a)

Figure 3 (b) Desired State Diagram

To help you get started with the design process, you have been given with a partially completed

next state transition table (Fig 4) along with the RTL of each state, and the partially completed

table with the necessary control signals that the state machine needs to generate in every state

(Fig 5). An external device generates START signal (not shown here) to let the FSM know that the

memory has been filled in with 10 integer values

BEGIN

WAIT

UIN--------------------

7

Question: [9+8 = 17 points] Complete the tables and write expressions (i.e. next states and

output expressions) to design the FSM-controller.

Figure 4

Figure 5

[8 points] Now draw the FSM controller using the expressions you developed and complete the

datapath in Figure 6. Specifically,

(a) show the necessary circuits for the next state transitions and connect them to the

corresponding FFs,

(b) label the control signals generated by your FSM-controller, and

(c) connect the control signals to the corresponding inputs on the datapath.

Next state transitions

expressions:

Example:

S1
+ =

S0.START + S4.DONE’

Output expressions:

Example, IDX.RST = S0

P

DONE

UIN--------------------

8

F
ig

u
re

 6
 D

at
ap

at
h

T
ra

n
si

ti
o
n
 l

o
g
ic

D

F
F

s
O

u
tp

u
t

lo
g
ic

UIN--------------------

9

Problem 5 (21 points): LC-3 instructions

The following LC-3 program fragment, represented as three hexadecimal numbers, is stored in
memory at the indicated locations and the following values are stored in registers:

address instruction register value register value
xB4FF X993F R0 xAAAA R4 X4B00

xB500 X6503 R1 xBBBB R5 X4B01

xB501 X7903 R2 xCCCC R6 X1111

xB502 XECEB R3 X2222 R7 X4B03

1. (6 points) Re-write three instructions in binary representation and provide their
corresponding RTL. (Note: formats of the entire LC-3 instruction set are provided at the end
of the exam booklet.)

address instruction binary instruction RTL (be specific to this instruction)
xB4FF X993F

xB500 X6503

xB501 X7903

2. (10 points) Assuming PC is initially set to xB4FF, trace the execution of the given program
segment for two instruction cycles, filling in the table below. Write down the values stored in
the PC, IR, MAR, MDR, N, Z, and P registers at the end of the instruction cycle. Values
for PC, IR, MAR, and MDR should be written in hexadecimal. Values for N, Z, and P should
be written in binary.

PC IR MAR MDR N Z P

3. (1 point) What hexadecimal value will be stored in R2 after the three instruction cycles?

Answer: _______________________

4. (1 point) What hexadecimal value will be stored at address xB502 after the three

instruction cycle??

Answer: _______________________

5. (3 point) Add an instruction at address xB503 such that value xDDDD will be stored at R5
after the instruction cycle. You will need the information that xDDDD is not located anywhere
in memory. Write your answer in hexadecimal.

Answer: ____________________________

UIN--------------------

10

Appendix:

Figure 7 Datapath

VALUES – it is a 16x32 memory to hold the ten integer values of the array, values[]. We assume that the

memory was filled in with the 10 integer values by some external device before the FSM start processing

the data. The external device generates START signal (not shown here) to let the FSM know that the

memory has been filled in with 10 integer values. The R/W’ is set to 1 to enable memory read mode

during the operation of the FSM. values[idx] refers to the memory element at the current memory

location/address.

IDX – is a 4-bit counter. The counter output is used as the address line for the memory to read ten integer

values in order. The DONE signal generated by the counter is used to indicate whether the FSM has

processed ten integer values of the array.

Control signals: IDX.RST is used to reset the counter to zero. IDX.CNT is used to increment the

counter. When IDX.CNT is 1, the counter is incremented by 1 with the rising edge of the clock.

CNT – is a 5-bit counter. It is used to count whether the serial adder has completed processing 32 pairs of

bits of shift registers A and B. The LAST signal becomes 1 when the serial adder has received the last

pair of bits of A and B. The counter is initialized to zero at the beginning of every serial addition process

(i.e. when the shift registers A and B are loaded with two integer values to be added by the 32-bit serial

adder). It generates a signal, Z=1, when the counter is reset to zero, to indicate that the first pair of bits of

A and B have arrived at the serial adder. Otherwise, Z will be set to 0.

Control signals: CNT.RST =1 is used to reset the counter to zero. Otherwise, the counter is

incremented by 1 with every rising of the clock.

UIN--------------------

11

NPZ – is used to indicate whether the value at the current memory address/location, i.e. values[idx] is

negative, positive or zero.

SUM – is a 32-bit register that will hold the summation of the positive integers of the array. The SUM is

connected to a multiplexer so that it can be initialized to zeros, or it can be loaded with the Sout (i.e.

sum+values[idx]) during the execution of FSM. Note: SUM will hold the result only for one cycle after

the COPY state.

Control signal: LD signal along with the multiplexer selection input LDZ are used to initialize the

register or to load the current sum into the register.

A, B, and C – are 32-bit right shift registers. A and B are connected to the serial inputs of the 32-bit serial

adder and C is connected to the output of the serial adder. Control signals LD.A and LD.B are used to

load A with SUM, and B with values[idx] respectively. Serial adder output S is connected to the SI

(serial Input) of C, which stores the results of serial addition. Note: Sout will have the result of 32-bit

serial addition in the next cycle when LAST signal becomes 1 (i.e. after 32 pairs of bits of A and B have

been processed in the serial adder).

Table of ASCII Characters

 Char Dec Hex | Char Dec Hex | Char Dec Hex | Char Dec Hex

(nul) 0 00 | (sp) 32 20 | @ 64 40 | ` 96 60

(soh) 1 01 | ! 33 21 | A 65 41 | a 97 61

(stx) 2 02 | " 34 22 | B 66 42 | b 98 62

(etx) 3 03 | # 35 23 | C 67 43 | c 99 63

(eot) 4 04 | $ 36 24 | D 68 44 | d 100 64

(enq) 5 05 | % 37 25 | E 69 45 | e 101 65

(ack) 6 06 | & 38 26 | F 70 46 | f 102 66

(bel) 7 07 | ' 39 27 | G 71 47 | g 103 67

(bs) 8 08 | (40 28 | H 72 48 | h 104 68

(ht) 9 09 |) 41 29 | I 73 49 | i 105 69

(lf) 10 0a | * 42 2a | J 74 4a | j 106 6a

(vt) 11 0b | + 43 2b | K 75 4b | k 107 6b

(ff) 12 0c | , 44 2c | L 76 4c | l 108 6c

(cr) 13 0d | - 45 2d | M 77 4d | m 109 6d

(so) 14 0e | . 46 2e | N 78 4e | n 110 6e

(si) 15 0f | / 47 2f | O 79 4f | o 111 6f

(dle) 16 10 | 0 48 30 | P 80 50 | p 112 70

(dc1) 17 11 | 1 49 31 | Q 81 51 | q 113 71

(dc2) 18 12 | 2 50 32 | R 82 52 | r 114 72

(dc3) 19 13 | 3 51 33 | S 83 53 | s 115 73

(dc4) 20 14 | 4 52 34 | T 84 54 | t 116 74

(nak) 21 15 | 5 53 35 | U 85 55 | u 117 75

(syn) 22 16 | 6 54 36 | V 86 56 | v 118 76

(etb) 23 17 | 7 55 37 | W 87 57 | w 119 77

(can) 24 18 | 8 56 38 | X 88 58 | x 120 78

(em) 25 19 | 9 57 39 | Y 89 59 | y 121 79

(sub) 26 1a | : 58 3a | Z 90 5a | z 122 7a

(esc) 27 1b | ; 59 3b | [91 5b | { 123 7b

(fs) 28 1c | < 60 3c | \ 92 5c | | 124 7c

(gs) 29 1d | = 61 3d |] 93 5d | } 125 7d

(rs) 30 1e | > 62 3e | ^ 94 5e | ~ 126 7e

(us) 31 1f | ? 63 3f | _ 95 5f |(del) 127 7f

