ECE 120 Final Exam

Spring 2017

Tuesday, May 9, 2017

Name: NetID:
Discussion Section and TA name:
9:00 AM [] AB1Rui
10:00 AM [] AB2RuiI
11:00 AM [] AB3Matt
12:00 PM [] AB4Pawel
1:00 PM [1 AB5Pawel
2:00 PM [] AB6Gowthami |[] ABA Huiren
3:00 PM [] AB7Gowthami |[] ABB Huiren
4.00 PM [] AB8Yu-Hsuan |[] ABC Sifan
5:00 PM [] AB9Yu-Hsuan |[] ABD Surya
e Be surethat your exam booklet has 15 pages.
o Write your name, netid and check discussion section on the title page.
e Do not tear the exam booklet apart, except for the last 4 pages.
e Use backs of pages for scratch work if needed.
e This is aclosed book exam. You may not use a calculator.
e You are allowed two handwritten 8.5 x 11" sheets of notes (both sides).
e Absolutely no interaction between students is allowed.
o Clearly indicate any assumptions that you make.
e The questions are not weighted equally. Budget your time accordingly.

Problem 1 17 points
Problem 2 14 points
Problem 3 14 points
Problem 4 14 points
Problem 5 12 points
Problem 6 15 points

Problem 7 14 points

Total 100 points

Problem 1 (17 points): Binary Representation and Operations, Hamming codes

1. (2 points) A presidential term in the US lasts 1461 days. If the President of the US decided
to refer to each day using fixed-length binary words, what is the minimum number of bits
needed per day?

Minimum number of bits: (decimal number)

2. (4 points) Convert the following 24-bit pattern to hexadecimal:

1010 1100 1100 1110 1101 1110, = X (hexadecimal number)

3. (4 points) Perform the following bitwise logical operations.

a) 0110 XOR 0011 =

b) (NOT(0101)) NOR 1001 =

4. (4 points) Perform the following operation in 4-bit 2’s complement representation.

1001 +10 =

Circle one: Carryout? YES NO

Circle one: Overflow? YES NO

5. (3 points) You received the following 7-bit message encoded with a Hamming code:
X7XeX5XaX3X2X1 = 0010010. Does the message have an error or not?

Circle one: YES NO

If you think there is an error, circle the bit below that is in error:

0010010

Problem 2 (14 points): LC-3 Code and Datapath Control Signals

1. (5 points) The following fragment of assembly code is part of a larger program, in which all
labels have been properly defined. Translate each line into LC-3 machine code. Some lines
have been done for you. Use spaces to separate groups of bits.

Assembly Code Machine Code

LD R2, BITS 0010 010 111111100

ADD R3, R2, R2

AND R2, R2, #-1

BRzp SKIP

ADD R3, R3, #1 0001 011 011 1 00001

SKIP ST R3, BITS

What operation does this fragment of code perform on the bits stored at the memory
address labeled BITS? Circle one answer.

Negation Arithmetic shift left Logical shift left Cyclic (circular) shift left
Bitwise NOT Arithmetic shift right Logical shift right Cyclic (circular) shift right

2. (9 points) In Patt & Patel's LC-3 datapath, the implementation of some FSM states is not
unique. For example, state number 23 (MDR«—SR), one of the states used to execute store
instructions in the LC-3 FSM, can be implemented in two different ways. Implement both
alternatives for state number 23 by completing the following table (with values 0, 1, or X).

If an answer is ‘don’t care’ then you must write X.

x 8
| =X -
= - |3 3 —_ o
e\ 5 X 9 || =) ~3 -
Z || L] < aldJ|lol2] x > S
wLSlylowolsEgElE]| 3 |z & |2 | 2| |&
3la3lalsslslslE 552388 |8 |& (3|23
m|(m | m|m -
djd|a|d|a|(a(a|O|0O00l2| o || « (=] w g |=|x

(a)

(b)

Problem 3 (14 points): LC-3 Assembly Programming

The program below waits for the user to type a single letter, flips the case of that letter, and then
prints the message “Your flipped-case letter is> " followed by the flipped-case letter.

For example, if the user types ‘A’ (ASCII #65), the program changes the case to ‘a’ (ASCII #97).
Similarly, if the user types ‘z’ (ASCII #122), the program changes the case to ‘Z’ (ASCII #90).
(You can refer to the ASCII table provided on the last page of this exam.)

Write the missing lines of code. You must write only one instruction per missing line.
Assume that the user only types letters.

LINE PROGRAM
1 -ORIG x3000
2 ; Get character
3
4 ; Check case of character
5 LD R1, Compare
6 ADD R1, RO, R1
7
8 ; Change the case
9 | ToUpperCase
10 BRnzp ChangeCase
11 | ToLowerCase
12 | ChangeCase ADD R2, RO, R2
13 ; Print "Your flipped-case letter is> "
14
15
16 ; Print modified character
17 ADD RO, R2, #0
18 ouT
19
20 | Compare -FILL #-96
21 | Message -STRINGZ "Your flipped-case letter is> "
22 | Positive -FILL #32
23 | Negative -FILL #-32
24 -END

Problem 4 (14 points): Bit Slices and Abstraction

The bit-sliced design below finds the smaller of two N-bit unsigned numbers, A=An-1An-2...Ao

and B=Bn.1Bn-2...Bo. As shown in the diagram, information flows from the bit slice for the most
significant bits to the bit slice for the least significant bits. The smaller number, S=Sn.1Sn-2...So,
(either A or B) comes out at the bottom.

] m—

iNATNJ iuefue
A B A B
C bitslice P »{C bitslice P

for

#1 D minimum Q

L 4

for
D minimum Q

S S
Sn-1 Sn2

The two bits passed between slices (and into the slice on the left) use
the representation shown in the table to the right.

Au BD
A B
—plC bit slice P outputs
f :
»D minicr’r:um q| ‘oered
s
So
CD/PQ | meaning
00 not used
01 A<B
10 A>B
11 A=B

1. (8 points) The K-maps below represent the outputs P and S for the bit slice. For each
K-map, find an expression with minimal area. You must consider both minimal SOP and
minimal POS solutions, but circle loops for only the better of the two choices (SOP or POS)
and write the corresponding expressions. Extra copies of each K-map are provided on the
next page, but only the copies on this page will be graded.

P
00
01

AB
11
10

CD
00 01 11 10
x| 0|11
x| 0]0]1
x 0] 1]1
x 0] 1]1

S

AB

00

01

11

10

CD
00 01 11 10
x| 0|0]O
x| 0|01
x| 1|11
x|[110|0

Problem 4 (14 points): Bit Slices and Abstraction, extra K-maps

Use the following K-maps as scratch copies. We will not grade any work on this page.

P

AB

AB

AB

00

01

11

10

00

01

11

10

00

01

1"

10

CcD S
00 01 11 10
x| 0|11
x| 0] 0|1
AB
x| 0|11
x| 011
CcD S
00 01 11 10
x| 0|11
x| 0] 0|1
AB
x| 0|11
x| 0| 1]1
cD S
00 01 11 10
x| 0|11
x| 0] 0|1
AB
x| 0|11
x| 0|11

(Problem 4 continues on next page)

00

01

1"

10

00

01

1"

10

00

01

11

10

CD
00 01 11 10
x| 0]0|O0
x| 0|0 |1
x| 1]1 |1
x| 1]0/0
CD
00 01 11 10
x| 0]0|O0
x| 0|0 |1
x| 1]1 |1
x| 1]0|0
CcD
00 01 11 10
x| 0|00
x| 0]0|1
x| 1711
x| 100

Problem 4 (14 points): Bit Slices and Abstraction, continued

(Figure and representation replicated for your convenience.)

AN-1B|!.I-‘I AN-EBN-Z IAl] BD
1 1 l 1 1 1 CD/PQ | meaning
A B A B A B 00 not used
e o [bltfz]rlce P »{C bltlerlce P > .. —{ C bltlerlce P ;Zr:ri; 01 A<B
1==+1D minimum Q »| D minimum Q —> =—1D minimum Q 10 A>B
i i i 11 A=B
Sna Sha 5
Your ECE120 lab partner suggests that rather 1 1 FG/HJ | meaning
than implementing the bit slice from gates, one 5 00 not used
can use a comparator bit slice and a mux, as 01 A<B
. : —|F, .. = HF—
shown below. The representation used for bits bit slice 10 A>B
between comparator bit slices is the same as the e for . i 11 A=B
. . . comparator -
representation used between the bit slices P

being implemented, as shown to the right.

" bit slice
D—te>G for J

comparator

bit slice for minimum

S

2. (3 points) Unfortunately, your lab partner’'s implementation does not work correctly. Explain
why, using TEN WORDS OR FEWER.

3. (3 points) Indicate how to fix the implementation by marking on the diagram above. You
may not use any additional components nor gates.

Problem 5 (12 points): LC-3 Instruction Control

In this problem, we introduce a new instruction ABC, with opcode 1101, to the LC-3 instruction

set:

ABC BaseR1, BaseR2, imm5

After decode, the instruction ABC is defined by the following sequence of six RTL statements.
Note that register R6 is used as a temporary register.

MAR « BaseR1

MDR « M[MAR]

R6 <« MDR

MDR « R6 AND SEXT(immb5), Setcc
MAR <« BaseR2

M[MAR] <~ MDR

1. (4 points) Express the functionality of ABC in a single-line RTL expression.
RTL expression:

2. (6 points) Provided below is the microinstruction corresponding to ABC's first RTL
statement (MAR < BaseR1). Give the control ROM address of this microinstruction.
Control ROM address:

X g
= S =
W) Z|x|x (O] <|O|dJ|o]2 X — ~ x =) N prd
N _ 22|2z(8|E0|Z|2(5|%]2 2 (Bl 5 |2 2% |4
c| 3 = a12121812|2|8|8|8|88|S| R IR 2 |8 | &5 |3 |3
0| 000 111000 0/1/0/0|0|0|0|O|0O|1|0|0O| 00 |O]| OO | OO |01]| 11]0O]|O
Fill in the 16 boxes below to give the binary encoding of the instruction ABC R3, R2, #-5.
Your answer MUST be consistent with the above MAR « BaseR1 microinstruction.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3. (2 points) In TWENTY WORDS OR FEWER, explain your choice (0 or 1) of bit 5 in the

ABC instruction.

Problem 6 (15 points): Decoders and Counters

1. (5 points) Consider the 3-variable function f(a,b,c) =
Hint: you may wish to draw a truth table.

a) Express f(a,b,c) in canonical sum of products form.

Canonical SOP form f(a,b,c) =

a®(bc), where & denotes XOR.

b) Implement f(a,b,c) using the decoder shown below and an OR gate. Draw and label all
decoder inputs and outputs. Label the size of the decoder by filling in the boxes.

-to-l:l

decoder

2. (4 points) Complete the K-maps below corresponding to a standard 3-bit up-counter
(counts the sequence 0, 1, 2 ... 7, 0, 1 ...) with state Q2Q1Qo. Give minimal SOP

expressions for Q;*, Q:*, and Qo".

+
Q2 Q1Q0

00 01 11 10

+
Q1 Q1QO

00 o1 11 10

+
QO

Minimal SOP for Q;* =

Q1Q
00 01 11 10

Minimal SOP for Q;* =

Minimal SOP for Qo* =

Problem

3. (6 points) Implement a 3-bit up-counter with parallel load and pause operations. Your

6 (15 points): Decoders and Counters, continued

10

counter should have control inputs L (load) and C (count); data inputs Xz, X1, Xo; outputs

Q2, Q1, Qo.

The L and C inputs operate as follows:

If L =1, then a parallel load is performed.
If L=0 and C = 1, the circuit works as a 3-bit up-counter.
If L=0 and C = 0, the counter pauses (that is, it stays in the same state.)

As shown below, the counter uses three D flip-flops and three 4:1 multiplexers. For your
convenience, the L, C, and Clock lines are provided for you. Complete the counter
implementation using as few gates (AND, OR, NOT, XOR) as possible. For full credit, use
only 2 XOR gates and 1 AND gate. Inverted inputs are not available. Hint: Recall

functi

on f(a,b,c) from part 1 of this problem.

4:1 mux
X5 — — —1D, Q .
I
I
! —|1 |
N I
: —> Qo
| —(2 Clock ,
! 1
I
: s s, |
! |
i B :
. L C !
i !
X, T 0 4:1 mux —| b, Q1_i_
! |
\ —»|1 . !
| Q)
I p—
! > 2 Clock 2 !
I
I R 3 I
l S So !
! |
| | | !
! L C !
! |
! |
' 4:1 mux !
Xo —— —> — Dy Qo—:—
! |
| — |1 :
I N
| B Qy
: —»|2 Clock P !
L — |
: — ™3 s, s l
C ! 1 0 I
I
I
I
I
]
I
I
I

11

Problem 7 (14 points): LC-3 Interpretation and Assembly

1. (5 points) Decode each of the following LC-3 instructions, writing the RTL in the box beside
the instruction. For full credit, your RTL must include specific values for each operand (for
example, “R4” rather than “DR"), and must be sign-extended when appropriate. You need
not, however, perform calculations such as addition of the PC value.

Write any immediate values either as 4-digit hexadecimal (prefix them with “x”) or as
decimal (prefix them with “#”). DO NOT USE ANY OTHER NOTATION.

Hint: Draw lines between bits to separate the instructions into appropriate fields.

instruction bits RTL meaning

0001 1110 1011 0010 |R7 ~ R2 - #14, Setcc
1110 0101 1111 1000
0101 1100 0000 0101
0011 0110 1000 0000

2. (9 points) Sadly, Prof. Lumetta forgot to include comments in the program below. Complete
the program’s symbol table below to the right. Fill only as many rows as necessary.

_ORIG Xx3000
AND R5,R5,#0 Symbol Table
LD R1,SADDR
LOOP LDR R4,R1,#0
BRz DONE
ADD R1,R1,#1
ADD R5,R5,#1
BRnzp LOOP
DONE NOT R5,R5
ADD R5,R5,#1
LEA R3,RESULT
STR R1,R3,#0
STR R5,R3,#1
HALT
RESULT .BLKW #2
SADDR .FILL x4000
_END

Given that the string ""Why-ECEB?"" is placed in memory starting at address x4000, write the
4-digit hexadecimal values held in the following memory locations when the program halts.

M[RESULT]=
M[RESULT+#1]=
M[R1] =

Table of ASCII Characters

Char Dec Hex | Char Dec Hex | Char Dec Hex | Char Dec Hex
(hul) 0 00 | (sp) 32 20 | @ 64 40 | ° 96 60
(soh) 1 01 | ! 33 21 | A 65 41 | a 97 61
(stx) 2 02 | ™ 34 22 | B 66 42 | b 98 62
(etx) 3 03 | # 35 23 | C 67 43 | ¢ 99 63
(eot) 4 04 | $ 36 24 |D 68 44 | d 100 64
(eng) 5 05 | % 37 25 | E 69 45 | e 101 65
(ack) 6 06 | & 38 26 | F 70 46 | f 102 66
(be) 7 07 | - 39 27 | G 71 47 1 g 103 67
(bs) 8 08 | (40 28 | H 72 48 | h 104 68
(ht) 9 09 |) 41 29 |1 73 49 1 i 105 69
(I 10 0a | * 42 2a | J 74 4da | j 106 6a
(vt) 11 Ob | + 43 2b | K 75 4b | k 107 6b
(fF) 12 Oc | , 44 2c | L 76 4c | 1 108 6¢c
(cr) 13 od | - 45 2d | M 77 4d | m 109 6d
(so) 14 0Oe | - 46 2e | N 78 4e | n 110 6e
(si) 15 Of | / 47 2f | O 79 4F | o 111 6f
(dle) 16 10 | O 48 30 | P 80 50 | p 112 70
(dcl) 17 11 | 1 49 31 | Q 81 51 | q 113 71
(dc2) 18 12 | 2 50 32 | R 82 52 | r 114 72
(dc3) 19 13 | 3 51 33 | S 83 53 | s 115 73
(dcd) 20 14 | 4 52 34 | T 84 54 | t 116 74
(nak) 21 15 | 5 53 35 | U 85 55 | u 117 75
(syn) 22 16 | 6 54 36 |V 86 56 | v 118 76
(etb) 23 17 | 7 55 37 | W 87 57 | w 119 77
(can) 24 18 | 8 56 38 | X 88 58 | x 120 78
(em) 25 19 | 9 57 39 |Y 89 59 |y 121 79
(sub) 26 1la | : 58 3a | z 90 5a | z 122 7a
(esc) 27 1b | 50 3b | [91 5b | { 123 7b
(fs) 28 1c | < 60 3c | \ 92 5¢c | | 124 7c
(gs) 29 1d | = 61 3d | 1] 93 5d | } 125 7d
(rs) 30 1le | > 62 e | » 94 5e | ~ 126 7e
(us) 31 1f | ? 63 3F | _ 95 5F |(del) 127 7f
IEEE 754 32-bit floating point format
sign Exponent Mantissa (fraction)
(range) (precision)
The actual number represented in this format is:
(_j_:]El ¥ 1| mantissa | % 2 -127

where 1< exponent < 254 for normalized representation.

LC-3 Control Word Fields

LC-3 TRAP Service Routines

M
[REReN]
AMY

HKNWTHS

®lkda

HKNWEHaa¥
HKOAWTHAAY
#“NWod

AOWHT
JdE3ERD
MNI¥81ED
daW=1ED
HKOWHYINSIED
22
234 a1
o= ap
da1'dn
dadian
HY T aT
NEL=Nen|

LC-3 Microsequencer Control

[0:5]C]

[0:E]anoD

a4l

16 depending an COMND hits)

4.8,

1, CAR « 00|Jopcode (opcode = IR[15:12]), anly during decode

0, CAR « J (plus 12

IRD {:
COND{

IR[11]
Addr.
mode

CONDO

THEMN (CAR < J plus 2) ELSE (CAR < J)

0) THEN (CAR < J plus 4) ELSE (CAR &)
09 THEN (CAR < J plus 19 ELSE [CAR « J)

GOND1
|
i

0}
1 and J[2]

I
d
i

I

1 and J[0]

GOND2
4
User
privilege
mode

1 and J[1]

010, IF (BEN

011, IF {IR[11]

ﬂ
j
Y

|
J3]
IRD

nterrupt

INT
|

present

I
.L
d

/

oo, CAR <« J
oot IF (R

J B-hit next value for CAR (plus modifications depending on COMND hits)
£
AN
1]

|
\
JIE] Ji4
6

Address of next state

0,0,IR[15:12]

Trap Vector

Assembler Name

Description

x20 GETC
x21 ouT
X22 PUTS
Xx23 IN

X24 PUTSP
x25 HALT

Read a single character from the keyboard. The character is not echoed onto the
console. Its ASCII code is copied into RO. The high eight bits of RO are cleared.

Write a character in ROL7:01] to the console display.

Write a string of ASCII characters to the console display. The characters are contained
in consecutive memory locations, one character per memory location, starting with
the address specified in RO. Writing terminates with the occurrence of x0000 in a
memory location.

Print a prompt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into RO.
The high eight bits of RO are cleared.

Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with the
address specified in RO. The ASCII code contained in bits [7:0] of a memory location
is written to the console first. Then the ASCII code contained in bits [15:8] of that
memory location is written to the console. (A character string consisting of an odd
number of characters to be written will have x00 in bits [15:8] of the memory
location containing the last character to be written.) Writing terminates with the
occurrence of x0000 in a memory location.

Halt execution and print a message on the console.

LC-3 FSM

LC-3 Instructions

o = _.m.
— % 7% £
i . -
= o ﬂmm 8
g o mey |S| 858 3
@ = - + oy m @
[i=] = 5 —- Boa 2
/) 5 & @ 4 =
/ o i o w Yoz g
{ 8 T = bogesh £
/ & = o Bix &
| a £ z akE O
__ " &
| — g - Ve
| o - v bS] s
= N oo ™
_] — £ £ T =
@W o _— & P N @ M@ T o=
oL o — gh |ec 3= o e
% o o \\\\\\\.,\\ \m./ & W mg _H./\ﬁm M.
g |- - 3 z g JONES
@ - - © = =
k T - & F T
o ¥ | i N e & & £
Y) & s | B 5| |8 3
& & = T gF N (_
‘e E o W ES - @
crES e [F]] e T RN ED L'
b = & = g ' = z
h V. R S — o 2 =
[e . T =T ™I gl 8 5
/ g g o g% e e = R
v E] e e g = e o
= N rA. 7 RN = [=e) -
] o = =0 -
= 4 T N_ |e 4 g b5 K]
1 E z |T|E°
| E =}
) 2 =
E| $ <\
\ T e
i
l w i
1 = = =
A1 . @ = 2 =
o 2 by T [=]
CE=3 [} @ i3 5
te & Eo E 18
3 Z8 88| | & g
2 @ T3 N 3
g |E : g
G /DL/E s —
LR) =) o
2 2 @ 2 @
NOTES: RTL corresponds to execution (after fetch!); JSRR not shown
T T
ADD 7 0001 7 DR 7 SR E 00 7 SR2 7 ADD DR, SR1, SR2 LD 7 0010 7 DR 7 PCoffsetd 7 LD DR, PCoffsetd
1 1 1 1 1 1 1 1 1 1 1 1 Il 1 1 1 1 1 1 Il 1 1 1
DR « SR1+ SR2, Setcc DR « M[PC + SEXT(PCoffsetd)], Setcc
T T
ADD 7 0001 7 DR 7 SR1 T 7 imm5 7 ADD DR, SR1, imm5 LDI 7 1010 7 DR 7 PCoffsetd 7 LDI DR, PCoffset9
1 1 1 1 1 1 1 1 Il 1 1 1 1 Il 1 1 1 1 1 1 Il 1 1 1
DR « SR1+ SEXT(imm5), Setcc DR « M[M[PC + SEXT(PCoffsetd)]], Setcc
T T
AND 7 0101 7 DR 7 SR E 00 7 SR2 7 AND DR, SR1, SR2 LDR 7 0110 7 DR |Base 7 offsetf 7 LDR DR, BaseR, offset6
1 1 1 1 1 1 1 1 1 1 1 1 Il 1 1 1 1 1 Il 1 1 1
DR « SR1AND SR2, Setcc DR « M[BaseR + SEXT(offsetf)], Setcc
T T
AND 7 0101 7 DR 7 SR1 T 7 imm5 7 AND DR, SR1, imm5 LEA 7 1110 7 DR 7 PCoffsetd 7 LEA DR, PCoffsetd
L1 1 1 1 L1 1 | 1 1 1 1 | L1 1 L1 1 | 1 L1
DR « SR1 AND SEXT(imm5), Setcc DR « PC + SEXT(PCoffsetd), Setcc
T T
BR 7 0000 |n|z L PCoffsetd 7 BR{nzp} PCoffset9 NOT 7 1001 7 DR 7 SR 7 111111 7 NOT DR, SR
1 1 1 1 1 1 | 1 | 1 1 1 1 | 1 1 1 1 1 | 1 1 1
((n AND N) OR (z AND Z) OR (p AND P)):
PC « PC + SEXT(PCoffsetd) DR« NOT SR, Setcc
T T
JMP 7 1100 7 000 Tﬁami 000000 7 JMP BaseR ST 7 0011 7 SR 7 PCoffsetd 7 ST SR, PCoffsetd
1 1 1 1 1 1 1 | 1 | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1
PC « BaseR M[PC + SEXT(PCoffsetd)] « SR
T T
JSR 7 0100 7 1 7 PCoffset11 7 JSR PCoffset11 STI 7 1011 7 SR 7 PCoffsetd 7 STI SR, PCoffsetd
1 1 1 1 1 1 1 1 Il 1 Il 1 1 1 1 Il 1 1 1 1 1 1 Il 1 1 1
R7 « PC, PC « PC + SEXT(PCoffseti1) M[M[PC + SEXT(PCoffsetd)]] — SR
T T
TRAP 7 1111 7 0000 7 trapvect8 7 TRAP trapvect8 STR 7 0111 7 SR mmwwl offseth 7 STR SR, BaseR, offset6
1 1 1 1 1 1 1 1 Il 1 1 1 1 1 Il 1 1 1

R7 « PC, PC « M[ZEXT(trapvects)] M[BaseR|+ SEXT(offsetd)] « SR

LC-3 Datapath Control Signals

LC-3 Datapath

Description
LO.MAR =1, MAR is loaded LO.CcC
LO.MDOR =1, MDR is loaded
LDIFE =1, IR iz lnaded GatebARMUK
LOD.PC =1, PCis loaded GateM DR
LD.REG =1, register file is loaded GateALL
LD.BEN =1, updates Branch Enahble (BEN) bit GatePC

EPDECX%

a,

1,

choases ZEXT IR[7:0]
MIO.EN

chooses address adder output

“.__

H‘__
“..__
H.__
”.—_

H..__

“_H__

Description

updates status bits from system bus

MARMUX output is put onto system bus
WOR contents are put onto system bus
ALL output is put onto system bus

PC contents are put onto system bus

Enables memory,

chooses memory output far MOR input
Disables memaory,

chooses system bus for MOR input

=0, chooses PC =1, M[MAR]<-MDR when IO EN =1
ABDIRTRLE _hn 1. chooses reg file SR10UT RV .T 0. MOR=-M[MAR] when MIO EN = 1
=00, chooses "0...00" =00, ADD
=01, chooses SEXT IR[5:0] =01, AND
ADDR2MUXS _ 40 chonses SEXT IR[ED] ALUKA = 0 ot A
= 11, chooses SEXT IR[10:0] =11 PASS A

SRIML

GatePC

"
*

IR[8:6]

=00
=01
=10.

= o

]
1
a

chooses PC +1
chooses systern bus ORMILIK
chooses address adder output

chooses IR[11:9]
chooses IR[8:6]
chooses "110"

1&

16

SR1
ouT

¥

A

16

GateMARMUY —/\

-
g S "_y.ﬁ
& wmso Cw{m
m:a HB/ﬁ - A
° 8 F NS 55
) - & 2 = 4 =&
= == = B . mﬁ E g
=] =
- 5% 4y
7= "é gl g
m
m =2h o .inm
oL [: e -
) = . B
2] e :]
m .ﬁIMIIR
— ot O
= < -
b4 " = | <
4 m ~Z" W
g . g 2
W —_
— \ﬂ.lln m
]
Lo
o N
Ill w
= el 2.ilnl. o
n_w slbm] 7
m B = B
. mww 20 |4 |4
m A 1 %] 13
—_ s = —_
e =Y &Y &

=00, chooses IR[11:9]
=01, chooges "111"
=10, chooses "110"

mﬂﬂ +—LD.CC

3
T
B
4]
[
M
S
%
= Wm
5, &
MRx
. 8
ol
: i 3
w| 2 & T
2 519 g @
S| Ly
<]

0

	Problem 1 (17 points): Binary Representation and Operations, Hamming codes
	Problem 2 (14 points): LC-3 Code and Datapath Control Signals
	Problem 3 (14 points): LC-3 Assembly Programming
	Problem 4 (14 points): Bit Slices and Abstraction
	Problem 4 (14 points): Bit Slices and Abstraction, continued
	Problem 5 (12 points): LC-3 Instruction Control
	Problem 6 (15 points): Decoders and Counters
	Problem 7 (14 points): LC-3 Interpretation and Assembly

