
ECE 120 Final Exam
Spring 2017

Tuesday, May 9, 2017

Name: NetID:
 ____________________________________ _______________

Discussion Section and TA name:

 9:00 AM [] AB1 Rui
10:00 AM [] AB2 Rui
11:00 AM [] AB3 Matt
12:00 PM [] AB4 Pawel
 1:00 PM [] AB5 Pawel
 2:00 PM [] AB6 Gowthami [] ABA Huiren
 3:00 PM [] AB7 Gowthami [] ABB Huiren
 4:00 PM [] AB8 Yu-Hsuan [] ABC Sifan
 5:00 PM [] AB9 Yu-Hsuan [] ABD Surya

• Be sure that your exam booklet has 15 pages.
• Write your name, netid and check discussion section on the title page.
• Do not tear the exam booklet apart, except for the last 4 pages.
• Use backs of pages for scratch work if needed.
• This is a closed book exam. You may not use a calculator.
• You are allowed two handwritten 8.5 x 11" sheets of notes (both sides).
• Absolutely no interaction between students is allowed.
• Clearly indicate any assumptions that you make.
• The questions are not weighted equally. Budget your time accordingly.

Problem 1 17 points ___________

Problem 2 14 points ___________

Problem 3 14 points ___________

Problem 4 14 points ___________

Problem 5 12 points ___________

Problem 6 15 points ___________

Problem 7 14 points ___________

Total 100 points ___________

2

Problem 1 (17 points): Binary Representation and Operations, Hamming codes

1. (2 points) A presidential term in the US lasts 1461 days. If the President of the US decided

to refer to each day using fixed-length binary words, what is the minimum number of bits
needed per day?

Minimum number of bits: _______________ (decimal number)

2. (4 points) Convert the following 24-bit pattern to hexadecimal:

1010 1100 1100 1110 1101 11102 = x_______________ (hexadecimal number)

3. (4 points) Perform the following bitwise logical operations.

a) 0110 XOR 0011 = ________________

b) (NOT(0101)) NOR 1001 = _______________

4. (4 points) Perform the following operation in 4-bit 2’s complement representation.

1001 + 10 =

Circle one: Carry out? YES NO

Circle one: Overflow? YES NO

5. (3 points) You received the following 7-bit message encoded with a Hamming code:
X7X6X5X4X3X2X1 = 0010010. Does the message have an error or not?

Circle one: YES NO

If you think there is an error, circle the bit below that is in error:

0 0 1 0 0 1 0

3

Problem 2 (14 points): LC-3 Code and Datapath Control Signals

1. (5 points) The following fragment of assembly code is part of a larger program, in which all

labels have been properly defined. Translate each line into LC-3 machine code. Some lines
have been done for you. Use spaces to separate groups of bits.

Assembly Code Machine Code

 LD R2, BITS 0010 010 111111100

 ADD R3, R2, R2

 AND R2, R2, #-1

 BRzp SKIP

 ADD R3, R3, #1 0001 011 011 1 00001

SKIP ST R3, BITS

What operation does this fragment of code perform on the bits stored at the memory
address labeled BITS? Circle one answer.

Negation Arithmetic shift left Logical shift left Cyclic (circular) shift left

Bitwise NOT Arithmetic shift right Logical shift right Cyclic (circular) shift right

2. (9 points) In Patt & Patel’s LC-3 datapath, the implementation of some FSM states is not

unique. For example, state number 23 (MDR←SR), one of the states used to execute store
instructions in the LC-3 FSM, can be implemented in two different ways. Implement both
alternatives for state number 23 by completing the following table (with values 0, 1, or X).
If an answer is ‘don’t care’ then you must write X.

4

Problem 3 (14 points): LC-3 Assembly Programming

The program below waits for the user to type a single letter, flips the case of that letter, and then
prints the message “Your flipped-case letter is> ” followed by the flipped-case letter.

For example, if the user types ‘A’ (ASCII #65), the program changes the case to ‘a’ (ASCII #97).
Similarly, if the user types ‘z’ (ASCII #122), the program changes the case to ‘Z’ (ASCII #90).
(You can refer to the ASCII table provided on the last page of this exam.)

Write the missing lines of code. You must write only one instruction per missing line.
Assume that the user only types letters.

LINE PROGRAM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 .ORIG x3000

 ; Get character

 ; Check case of character

 LD R1, Compare

 ADD R1, R0, R1

 ; Change the case

ToUpperCase

 BRnzp ChangeCase

ToLowerCase

ChangeCase ADD R2, R0, R2

 ; Print "Your flipped-case letter is> "

 ; Print modified character

 ADD R0, R2, #0

 OUT

Compare .FILL #-96

Message .STRINGZ "Your flipped-case letter is> "

Positive .FILL #32

Negative .FILL #-32

 .END

5

Problem 4 (14 points): Bit Slices and Abstraction

The bit-sliced design below finds the smaller of two N-bit unsigned numbers, A=AN-1AN-2…A0
and B=BN-1BN-2…B0. As shown in the diagram, information flows from the bit slice for the most
significant bits to the bit slice for the least significant bits. The smaller number, S=SN-1SN-2…S0,
(either A or B) comes out at the bottom.

The two bits passed between slices (and into the slice on the left) use
the representation shown in the table to the right.

1. (8 points) The K-maps below represent the outputs P and S for the bit slice. For each

K-map, find an expression with minimal area. You must consider both minimal SOP and
minimal POS solutions, but circle loops for only the better of the two choices (SOP or POS)
and write the corresponding expressions. Extra copies of each K-map are provided on the
next page, but only the copies on this page will be graded.

P = __

S = __

CD/PQ meaning
00 not used
01 A < B
10 A > B
11 A = B

S CD
 00 01 11 10

AB

00 x 0 0 0

01 x 0 0 1

11 x 1 1 1

10 x 1 0 0

P CD
 00 01 11 10

AB

00 x 0 1 1

01 x 0 0 1

11 x 0 1 1

10 x 0 1 1

6

Problem 4 (14 points): Bit Slices and Abstraction, extra K-maps

Use the following K-maps as scratch copies. We will not grade any work on this page.

(Problem 4 continues on next page)

7

Problem 4 (14 points): Bit Slices and Abstraction, continued

(Figure and representation replicated for your convenience.)

Your ECE120 lab partner suggests that rather
than implementing the bit slice from gates, one
can use a comparator bit slice and a mux, as
shown below. The representation used for bits
between comparator bit slices is the same as the
representation used between the bit slices
being implemented, as shown to the right.

2. (3 points) Unfortunately, your lab partner’s implementation does not work correctly. Explain
why, using TEN WORDS OR FEWER.

__

3. (3 points) Indicate how to fix the implementation by marking on the diagram above. You
may not use any additional components nor gates.

CD/PQ meaning
00 not used
01 A < B
10 A > B
11 A = B

FG/HJ meaning
00 not used
01 A < B
10 A > B
11 A = B

8

Problem 5 (12 points): LC-3 Instruction Control

In this problem, we introduce a new instruction ABC, with opcode 1101, to the LC-3 instruction
set:

ABC BaseR1, BaseR2, imm5

After decode, the instruction ABC is defined by the following sequence of six RTL statements.
Note that register R6 is used as a temporary register.

 MAR ← BaseR1
 MDR ← M[MAR]
 R6 ← MDR
 MDR ← R6 AND SEXT(imm5), Setcc
 MAR ← BaseR2
 M[MAR] ← MDR

1. (4 points) Express the functionality of ABC in a single-line RTL expression.

RTL expression: __

2. (6 points) Provided below is the microinstruction corresponding to ABC's first RTL
statement (MAR ← BaseR1). Give the control ROM address of this microinstruction.

Control ROM address: _________

IR
D

CO
ND

(3
)

J(
6)

LD
.B

EN

LD
.M

AR

LD
.M

DR

LD
.IR

LD

.P
C

LD

.R
EG

LD

.C
C

G

at
eM

AR
M

UX

G
at

eM
D

R

G
at

eA
LU

G

at
eP

C

M
AR

M
UX

PC
M

UX
(2

)

AD
DR

1M
UX

AD
DR

2M
UX

(2
)

DR
M

UX
(2

)

SR
1M

UX
(2

)

AL
UK

(2
)

M
IO

.E
N

R.
W

0 000 111000 0 1 0 0 0 0 0 0 0 1 0 0 00 0 00 00 01 11 0 0

Fill in the 16 boxes below to give the binary encoding of the instruction ABC R3, R2, #-5.
Your answer MUST be consistent with the above MAR ← BaseR1 microinstruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. (2 points) In TWENTY WORDS OR FEWER, explain your choice (0 or 1) of bit 5 in the

ABC instruction.

__

__

9

Problem 6 (15 points): Decoders and Counters

1. (5 points) Consider the 3-variable function f(a,b,c) = a⊕(bc), where ⊕ denotes XOR.

Hint: you may wish to draw a truth table.

a) Express f(a,b,c) in canonical sum of products form.

Canonical SOP form f(a,b,c) = __

b) Implement f(a,b,c) using the decoder shown below and an OR gate. Draw and label all

decoder inputs and outputs. Label the size of the decoder by filling in the boxes.

2. (4 points) Complete the K-maps below corresponding to a standard 3-bit up-counter

(counts the sequence 0, 1, 2 … 7, 0, 1 …) with state Q2Q1Q0. Give minimal SOP
expressions for Q2

+, Q1
+, and Q0

+.

Minimal SOP for Q2

+ = ___

Minimal SOP for Q1

+ = ___

Minimal SOP for Q0

+ = ___

-to-
decoder

10

Problem 6 (15 points): Decoders and Counters, continued

3. (6 points) Implement a 3-bit up-counter with parallel load and pause operations. Your

counter should have control inputs L (load) and C (count); data inputs X2, X1, X0; outputs
Q2, Q1, Q0.

The L and C inputs operate as follows:

• If L = 1, then a parallel load is performed.
• If L = 0 and C = 1, the circuit works as a 3-bit up-counter.
• If L = 0 and C = 0, the counter pauses (that is, it stays in the same state.)

As shown below, the counter uses three D flip-flops and three 4:1 multiplexers. For your
convenience, the L, C, and Clock lines are provided for you. Complete the counter
implementation using as few gates (AND, OR, NOT, XOR) as possible. For full credit, use
only 2 XOR gates and 1 AND gate. Inverted inputs are not available. Hint: Recall
function f(a,b,c) from part 1 of this problem.

11

Problem 7 (14 points): LC-3 Interpretation and Assembly

1. (5 points) Decode each of the following LC-3 instructions, writing the RTL in the box beside

the instruction. For full credit, your RTL must include specific values for each operand (for
example, “R4” rather than “DR”), and must be sign-extended when appropriate. You need
not, however, perform calculations such as addition of the PC value.

Write any immediate values either as 4-digit hexadecimal (prefix them with “x”) or as
decimal (prefix them with “#”). DO NOT USE ANY OTHER NOTATION.

Hint: Draw lines between bits to separate the instructions into appropriate fields.

instruction bits RTL meaning

0001 1110 1011 0010 R7 ← R2 - #14, Setcc

1110 0101 1111 1000

0101 1100 0000 0101

0011 0110 1000 0000

2. (9 points) Sadly, Prof. Lumetta forgot to include comments in the program below. Complete

the program’s symbol table below to the right. Fill only as many rows as necessary.

 .ORIG x3000
 AND R5,R5,#0
 LD R1,SADDR
LOOP LDR R4,R1,#0
 BRz DONE
 ADD R1,R1,#1
 ADD R5,R5,#1
 BRnzp LOOP
DONE NOT R5,R5
 ADD R5,R5,#1
 LEA R3,RESULT
 STR R1,R3,#0
 STR R5,R3,#1
 HALT
RESULT .BLKW #2
SADDR .FILL x4000
 .END

Given that the string "Why-ECEB?" is placed in memory starting at address x4000, write the
4-digit hexadecimal values held in the following memory locations when the program halts.

 M[RESULT]= ___________

 M[RESULT+#1]= ___________

 M[R1] = ___________

12

Table of ASCII Characters

 Char Dec Hex | Char Dec Hex | Char Dec Hex | Char Dec Hex
(nul) 0 00 | (sp) 32 20 | @ 64 40 | ` 96 60
(soh) 1 01 | ! 33 21 | A 65 41 | a 97 61
(stx) 2 02 | " 34 22 | B 66 42 | b 98 62
(etx) 3 03 | # 35 23 | C 67 43 | c 99 63
(eot) 4 04 | $ 36 24 | D 68 44 | d 100 64
(enq) 5 05 | % 37 25 | E 69 45 | e 101 65
(ack) 6 06 | & 38 26 | F 70 46 | f 102 66
(bel) 7 07 | ' 39 27 | G 71 47 | g 103 67
(bs) 8 08 | (40 28 | H 72 48 | h 104 68
(ht) 9 09 |) 41 29 | I 73 49 | i 105 69
(lf) 10 0a | * 42 2a | J 74 4a | j 106 6a
(vt) 11 0b | + 43 2b | K 75 4b | k 107 6b
(ff) 12 0c | , 44 2c | L 76 4c | l 108 6c
(cr) 13 0d | - 45 2d | M 77 4d | m 109 6d
(so) 14 0e | . 46 2e | N 78 4e | n 110 6e
(si) 15 0f | / 47 2f | O 79 4f | o 111 6f
(dle) 16 10 | 0 48 30 | P 80 50 | p 112 70
(dc1) 17 11 | 1 49 31 | Q 81 51 | q 113 71
(dc2) 18 12 | 2 50 32 | R 82 52 | r 114 72
(dc3) 19 13 | 3 51 33 | S 83 53 | s 115 73
(dc4) 20 14 | 4 52 34 | T 84 54 | t 116 74
(nak) 21 15 | 5 53 35 | U 85 55 | u 117 75
(syn) 22 16 | 6 54 36 | V 86 56 | v 118 76
(etb) 23 17 | 7 55 37 | W 87 57 | w 119 77
(can) 24 18 | 8 56 38 | X 88 58 | x 120 78
(em) 25 19 | 9 57 39 | Y 89 59 | y 121 79
(sub) 26 1a | : 58 3a | Z 90 5a | z 122 7a
(esc) 27 1b | ; 59 3b | [91 5b | { 123 7b
(fs) 28 1c | < 60 3c | \ 92 5c | | 124 7c
(gs) 29 1d | = 61 3d |] 93 5d | } 125 7d
(rs) 30 1e | > 62 3e | ^ 94 5e | ~ 126 7e
(us) 31 1f | ? 63 3f | _ 95 5f |(del) 127 7f

IEEE 754 32-bit floating point format

The actual number represented in this format is:

where 1≤ exponent ≤ 254 for normalized representation.

1 8 23

sign Exponent
(range)

Mantissa (fraction)
(precision)

LC-3 TRAP Service Routines

LC-3 Control Word Fields

LC-3 Microsequencer Control

LC-3 Instructions

LC-3 FSM

LC-3 Datapath

LC-3 Datapath Control Signals

	Problem 1 (17 points): Binary Representation and Operations, Hamming codes
	Problem 2 (14 points): LC-3 Code and Datapath Control Signals
	Problem 3 (14 points): LC-3 Assembly Programming
	Problem 4 (14 points): Bit Slices and Abstraction
	Problem 4 (14 points): Bit Slices and Abstraction, continued
	Problem 5 (12 points): LC-3 Instruction Control
	Problem 6 (15 points): Decoders and Counters
	Problem 7 (14 points): LC-3 Interpretation and Assembly

