
Page: 1 Name: __

1

ECE 190 Final Exam
Fall 2012

Wednesday, December 19th, 2012

 Be sure your exam booklet has 4 double-sided pages.

 Ask TA if you need paper for scratch work.

 You are allowed three handwritten 8.5 x 11" sheets of notes.

 This is a closed book exam. You may not use a calculator.

 Absolutely no interaction between students is allowed.

 Be sure to clearly indicate any assumptions that you make.

 The questions have different level of difficulty. Budget your time accordingly.

 Don’t panic, and good luck!

Instructions for accessing/working on the programming problems

 Log into an EWS Linux machine.

 Appendixes A and D from the textbook are provided for you on the desktop.

 Open a terminal window. Check if directory finalexam exists.

 Save your code in the files indicated by the problem statements. Do not rename the files.
We will not grade your problem if it is not saved as required.

 We are NOT using a subversion repository for the exam. We will grade the saved files that
you leave in your finalexam directory.

 Your code will be graded by an autograder. You may receive zero points if your code does
not assemble, does not compile, or does not behave as specified.

 To begin work on problem X, use the cd command to get to the projectX directory.

 To edit the file, type gedit givenfilename &
(Replace givenfilename with the name of the file where you will add your code.)

 Save your work.

LC-3 Tools reference information

 To assemble your code and produce the object file, type lc3as givenfilename.asm

 To run the LC-3 graphical simulator, type lc3sim-tk givenfilename.obj

 To run the LC-3 command-line simulator, type lc3sim givenfilename.obj

C Tools reference information

 If Makefile is provided, use it for compiling the project code and follow the instructions
provided with the problem statement for running and testing your program

 If no Makefile is provided, use gcc or clang compiler as follows:

 To compile your code using clang compiler, type clang -ansi -Wall -g -lm <c file name>

 To compile your code using gcc compiler, type gcc -ansi -Wall -g -lm <c file name>

 To execute your code, type ./a.out

Page: 2 Name: __

2

Programming Problem 1 (25 pts): C to LC-3 Assembly Conversion

Convert the following function from C to LC-3. This function recursively traverses a tree and
returns the value stored in the left-most leaf node.

char left_most(treenode *root)

{

 if (!root->left) {

 return root->data;

 }

 return left_most(root->left);

}

The tree node is defined as follows:

typedef struct treenode

{

 struct treenode *left;

 struct treenode *right;

 char data;

} treenode;

Remember that structures merely consist of simple data types where one element always

comes after another in memory. That is if root points to an address of x2003, the left pointer

address is contained within x2003, the right pointer address is contained within x2004, and

data value is contained within x2005.

Your program should be saved in finalexam/project1/left_most.asm file. The file already

contains an LC-3 assembly implementation of MAIN function that calls left_most function.

You should not modify MAIN function.

data.asm file is provided for your convenience for testing. It contains a short hard-coded tree
consisting of 6 nodes. As you can see from MAIN’s implementation, tree’s root node is stored
starting at address x2003.

To receive full credit, your program should correctly run in lc3sim (or lc3sim-tk) and should
produce the correct output. You must use the run-time stack convention presented in the
textbook for subroutine invocation. Your function does not need to save and restore the
registers. You may not make any assumptions about the behavior of MAIN other than that it
follows the runtime convention presented in the textbook.

To test your left_most function using the provided MAIN and data.asm, assemble both

left_most.asm and data.asm, load them in the lc3 simulator, set PC to x3000, and run it.

Your code will be graded by an autograder for functionality of the left_most function as well

as the correct construction of the activation record in the run-time stack. Consequently, you
MAY NOT perform any optimizations that impact the contents of the stack. For example, ALL
local variables used in the C function, if any, should be stored in the run-time stack
appropriately. The local variables may NOT be stored locally in memory reserved by .FILL,
.BLKW, etc. You may receive zero points if your code does not assemble or does not behave as
specified.

Page: 3 Name: __

3

Programming Problem 2 (20 pts): Linked Data Structures

Implement a recursive function for counting the number of negative values stored in a tree:

int countNegatives(struct node* root);

The function requires one argument: pointer to the root node of the tree. It should traverse the
tree and return the number of negative value stored in the tree. Tree node data structure is
defined as follows:

struct node

{

 int data;

 struct node* left;

 struct node* right;

}

Provided files (in finalexam/project2)

problem2.c contains main function that is used for setting up a simple tree and testing the

function you write. You can modify it as needed for testing.

tree.c should contain the function that you are required to write. All the code you write should
be in this file.

tree.h contains the function prototypes necessary to use your function. Do not modify this file,
do not change function prototypes!

Makefile is provided to compile your code by typing make when in finalexam/problem2
directory. Do not modify this file!

Compiling and running

To compile your code, simply type make

To test your code, type ./problem2

Page: 4 Name: __

4

Programming Problem 3 (20 pts): Testing and Debugging

In this assignment, you are required to find and fix errors and bugs in the provided program.
The program implements functions that allow to add, find, and remove nodes in a linked list.
There are three bugs, one in each of the following functions:

int AddItem(item **ourList, char name[]);

void RemoveItem(item **ourList);

item **FindItem(item **ourList, char name[]);

In addition, there is one syntax error that prevents the code from compiling without errors or
warnings. You are required to find and fix it before finding the remaining bugs.

main function and PrintList function are provided for your convenience for testing purposes.

Your fixed program should be saved in finalexam/project3/llist.c. You may want to make a
backup of this file before starting to modify it.

You are welcome to use gdb, valgrind, or any other tools available on the system for
debugging the code. The bugs are due to logical errors and may manifest itself in unexpected
behavior, segmentation fault, memory leak, or other undesirable side effects.

Each bug can be fixed with a minor modification to just one line of the existing code, addition of
a missing statement, removal of an instruction, or moving an instruction from one place in the
code to another place. Extensive code modifications are not necessary and are not allowed.

yutingchen
Text Box

Page: 5 Name: __

5

Programming Problem 4 (35 pts): Problem Solving with Files and Arrays

In this assignment, you are required to implement a program for computing perimeter of a
polygon based on its vertex coordinates stored in a file. The computed results should be stored
into another file.

Input file format

Input file contains the number of vertices record followed by space-separated x and y coordinate
records for each vertex. For example, the following file contains a polygon consisting of 4
vertices:

4

1 1

1 5

2 4

3 2

Note that the polygon is formed by connecting vertices in the order they appear in the input file.

Vertice data structure

typedef struct {

 int x, y; /* vertex coordinates */

 float length; /* polygon’s side length */

} vertex;

Functions to implement

vertex * read_polygon(char *file_name, int *count);

This function should read the number of vertices record from the file with the supplied

file_name and populate an array of vertex records with data read from the file. Memory for the

array of vertex records should be allocated dynamically. Note that only x and y fields need to

be populated by this function. The function should return a pointer to the populated array of

vertex records and the number of read records in count. If the function fails to read data from

the file, it should return NULL and count should be set to 0.

float calc_perimeter(vertex* vrtx, int count);

This function should calculate length of each side of the polygon as well as the polygon’s

perimeter. The length of polygon’s side is computed as √()
 ()

 . This value

should be stored in the length field of the vertex with coordinates (x1, y1). Perimeter is

computed by adding up all sides of the polygon. This value should be computed and returned
by the function. (Do not forget to add ALL sides when computing the perimeter.)

Page: 6 Name: __

6

int record_polygon(char *file_name, vertex *vrtr, int count, float

perimeter);

This function should write to file file_name the number of vertices record followed by records

for each vertex consisting of the space-separated x, y, and length fields, followed by the
perimeter. For example, the following output file should be created for the above input file:

4

1 1 4.00

1 5 1.41

2 4 2.24

3 2 2.24

9.89

The function should also free memory allocated for vertex array. It should return 1 if the data is
successfully stored in the output file, or 0 otherwise.

Provided files (in finalexam/project4)

problem4.c contains main function that is used for testing the functions you write. It calls your

functions and also prints the results of calc_perimeter to the screen. You should not modify

it.

polygon.c should contain all the functions that you are required to write. All the code you write
should be in this file.

polygon.h contains the function prototypes necessary to use your functions. Do not modify this
file, do not change function prototypes!

Makefile is provided to compile your code by typing make when in problem4 directory. Do not
modify this file!

input.txt is a sample input file used to test your code. The input file we use when grading will
have a different name and content. Make sure you do not hardcode values!

Compiling and testing

To compile your code, simply type make

To test your code, type ./problem4 input.txt output.txt

Page: 7 Name: __

7

