
ZJU-UIUC Institute
Final Exam, ECE 220

Wednesday 2 January 2019

 Be sure that your exam booklet has 12 pages.

 Write your name and Student ID on the first page.

 Some of C’s I/O routines and an LC-3 ISA guide are provided. Unlike the first
midterm, Patt and Patel’s Appendix A will not be available during the exam.

 Do not tear the exam apart other than to remove the last two reference pages.

 This is a closed book exam. You may not use a calculator.

 You are allowed THREE handwritten A4 sheets of notes (both sides).

 YOU MAY NOT USE EXTRA PAPER! WRITE ON THE EXAM!

 Absolutely no interaction between students is allowed.

 Show all work, and clearly indicate any assumptions that you make.

 Don’t panic, and good luck!

Problem 1 25 points _______________________________

Problem 2 15 points _______________________________

Problem 3 20 points _______________________________

Problem 4 25 points _______________________________

Problem 4 15 points _______________________________

Total 100 points _______________________________

Name (pinyin and Hanzi):

Student ID:

2

Problem 1 (25 points): Short Answer Questions

1. (5 points) The program below was designed to print the number 5 on the LC-3 display. The program
does not work. USING TEN WORDS OR FEWER, explain why.

 .ORIG x3000
 JSR A
 OUT
 BRnzp DONE

A AND R0,R0,#0
 ADD R0,R0,#5
 JSR B
 RET

DONE HALT
ASCII .FILL x0030
B LD R1,ASCII

 ADD R0,R0,R1
 RET
 .END

Answer: ___

2. (5 points) As shown below, Prof. Lumetta attempted to simplify the program from Problem 1.1 above.
His version does not work, either. USING TEN WORDS OR FEWER, explain why.

 .ORIG x3000
 LD R0,NUM5
 STI R0,DDR
 HALT

NUM5 .FILL x35 ; ASCII digit '5'
DDR .FILL xFE06

 .END

Answer:

3. (5 points) Prof. Lumetta’s new C++ program crashes after main has returned. USING TEN WORDS
OR FEWER, explain how this behavior is possible.

Answer: __

3

Problem 1, continued:

4. (5 points) Read the code and fill in the outputs below.

#include <stdio.h>

typedef void (*func_call)(int);

void callback1 (int a)
{

 printf ("%d ", a);
}
void callback2 (int b)
{

 printf ("%d ", 9 - b);
}

func_call callback_function;

void foo (int n)
{

 int i;
 for (i = n; i < n + 3; i++) {

 if (callback_function) {
 (*callback_function) (i);

 }
 }
 printf ("\n");

}

int main ()
{

 callback_function = &callback1;
 printf ("A: ");
 foo (1);

 callback_function = NULL;
 printf ("B: ");
 foo (3);

 callback_function = &callback2;
 printf ("C: ");
 foo (5);

 return 0;
}

Complete the output from the program:

A: _____________________

B: _____________________

C: _____________________

4

Problem 1, continued:

5. (5 points) Prof. Lumetta has developed a new type of book called a “good book,” as shown below.

typedef struct book_t book_t;
struct book_t {

 // some stuff
 book_t* next; // for the library

};

typedef struct good_book_t good_book_t;
struct good_book_t {

 book_t base;
 // some other stuff
 void (*promote_book) (void); // a function pointer for good books

};

And he has a file scope variable with a list of books he owns…

static book_t* Lumetta_library = NULL;

Once he has populated his library with both good books and not-so-good books (plain old book_t’s),
he wants to execute the following code…

book_t* b;

for (b = Lumetta_library; NULL != b; b = b->next) {
 good_book_t* g = (good_book_t*)b;
 g->promote_book ();

}

USING FIFTEEN WORDS OR FEWER, explain to Prof. Lumetta why his code keeps crashing.

__

__

5

Problem 2 (15 points): Pareto Dominance with Recursion

This problem is based on the following node structure:

typedef struct node_t Node;
struct node_t {

 int32_t X; // metric one: smaller is better
 int32_t Y; // metric two: smaller is better
 Node* next;

};

Write a recursive function that, given a pointer to the head of a singly-linked list of dynamically-allocated
nodes sorted by their X values (from smallest to largest), removes all Pareto-dominated nodes from the list
and frees the removed nodes. Assume that all X values are unique.

A node is Pareto-dominated if another node in the list has smaller or equal values for both X and Y.

A solution is possible using twelve lines of code.

For credit, your function must be recursive.

void remove_dominated (Node* head)
{

}

6

Problem 3 (20 points): I/O in C

In this problem, you must write a C function that processes one file to produce a second file. The input file
is specified by the argument fname. The output file must be called out.txt. Your function must read
characters from the input file, remove any repeated characters (case sensitive), and write the remaining
characters to the output file.

For example, if the input file contains “aaa112234abgFFrrrR” (no quotes), the output file must contain
“a1234abgFrR” (again, no quotes) after your function finishes writing it.

 Declare any additional variables that you need.
 Be sure to check for any possible failures and clean up any resources used.
 Return 1 on success, or 0 on failure. (Do not print error messages.)
 Remember that I/O library information is given in the reference sheet at the back of the exam.

int32_t file_reduce (const char* fname)
{

 FILE* in; // input stream
 FILE* out; // output stream
 // First, write code to prepare the streams for use.

 // Read the input file and produce the output.

 // Clean up and return.

}

7

Problem 4 (25 points): Lists and Hierarchies of Structures

Recall that in class we developed container code for cyclic, doubly-linked lists with sentinels. Later, you
made use of the code in a lab.

The node structure for the list appears below, and a diagram of the structure in memory when compiled for
LC-3 appears to the right (with offsets).

typedef struct double_list_t double_list_t;
struct double_list_t {

 double_list_t* prev; // previous element of list
 double_list_t* next; // next element of list

};

1. (10 points) Implement the list insertion code shown below as an LC-3 assembly subroutine. The
diagram to the right of the code shows the stack on entry to your subroutine.

 Do NOT set up a stack frame.
 Use NO MORE THAN SEVEN INSTRUCTIONS (not counting RET, provided for you).
 Your code may change only R0, R1, and R2.
 Do not change R6—the subroutine returns void.
 Hint: if you put the right values into the three registers, you need only one instruction per line of C code.

void
dl_insert (double_list_t* head, double_list_t* elt)
{

 elt->next = head->next;
 elt->prev = head;
 head->next->prev = elt;
 head->next = elt;

}

DL_INSERT ___

 RET

+0 prev
+1 next

R6 -> head
elt

8

Problem 4, continued:

(code and diagram replicated for your convenience)

typedef struct double_list_t double_list_t;
struct double_list_t {

 double_list_t* prev; // previous element of list
 double_list_t* next; // next element of list

};

2. (10 points) Implement the code shown below to find the first element of a list as an LC-3 assembly
subroutine. The diagram to the right of the code shows the stack on entry to your subroutine.

 Do NOT set up a stack frame.
 Use NO MORE THAN TEN INSTRUCTIONS (not counting RET, provided for you).
 Your code may change only R0, R1, R2, R3, and R6.
 Be sure to push the return value on top of the stack.

void*
dl_first (double_list_t* head)
{

 return (head == head->next ? NULL : head->next);
}

DL_FIRST __

__

__

__

__

__

__

__

__

__

RET

3. (5 points) Prof. Lumetta has another issue. He has implemented a list of 3D points using the doubly-
linked list code. Here is his structure definition:

typedef struct 3D_point_t 3D_point_t;
struct 3D_point_t {

 int32_t x, y, z; // coordinates of point
 double_list_t dl; // for list of points

};

Here’s the problem: after he fills in the coordinates for a point, he inserts the point into a list using
dl_insert. The insertion seems to work fine, but when he looks at the coordinates of the point, they
have changed! USING TEN WORDS OR FEWER, explain the problem.

__

R6 -> head

+0 prev
+1 next

9

Problem 5 (15 points): C++ Call Sequencing

Read the code below.

#include <stdio.h>

class THING {
 int x;

public:
 THING () : x (1) {

 printf ("ONE ");
 }
 THING (int val) : x (val) {

 printf ("%d ", val);
 }
 THING& operator= (const THING& t) {

 this->x = t.x + 10;
 printf ("= %d", this->x);
 return *this;

 }
 friend THING operator+ (const THING& t, const THING& u) {

 printf ("-> ");
 return THING (t.x * u.x);

 }
};

THING* function ()
{

 printf ("line 1: ");
 THING t(1);
 printf ("\nline 2: ");
 THING u = (t + 3) + 5;
 printf ("\nline 3: ");
 return new THING (u + (7 + 9));

}

1. (10 points) Fill in the blanks below with the rest of the output produced when the
subroutine function is called:

line 1: ___

line 2: ___

line 3: ___

10

Problem 5, continued:

(code replicated for your convenience)

#include <stdio.h>

class THING {
 int x;

public:
 THING () : x (1) {

 printf ("ONE ");
 }
 THING (int val) : x (val) {

 printf ("%d ", val);
 }
 THING& operator= (const THING& t) {

 this->x = t.x + 10;
 printf ("= %d", this->x);
 return *this;

 }
 friend THING operator+ (const THING& t, const THING& u) {

 printf ("-> ");
 return THING (t.x * u.x);

 }
};

THING* function ()
{

 printf ("line 1: ");
 THING t(1);
 printf ("\nline 2: ");
 THING u = (t + 3) + 5;
 printf ("\nline 3: ");
 return new THING (u + (7 + 9));

}

2. (5 points) Prof. Lumetta has a dilemma. He wrote the main function below. He wants to follow the
“C++ style” and declare THING U as shown, but the assignment produces no output! He has noticed that
if he puts the declaration at the top of the function, as with THING T, output is produced when T is
assigned a value.

int main ()
{

 THING T;
 THING* ptr = function ();

 T = *ptr; // this line produces output
 THING U = *ptr; // this line does not!

 delete ptr;
 return 0;

}

USING FIFTEEN OR FEWER WORDS, explain the problem.

11

some of the routines from C’s standard I/O library

// returns new stream, or NULL on failure
FILE* fopen (const char* path, const char* mode);

// returns 0 on success, or EOF on failure
int fclose (FILE* stream);

// returns char, or EOF on failure
int fgetc (FILE* stream);

// returns s, or NULL on failure
char* fgets (char* s, int size, FILE* stream);

// returns # of elements read, or 0 on failure
size_t fread (void* ptr, size_t size, size_t nmemb, FILE* stream);

// returns # of conversions, or -1 on failure (no conversions)
int fscanf (FILE* stream, const char* format, ...);

// returns # of conversions, or -1 on failure (no conversions)
int sscanf (const char* str, const char* format, ...);

// returns c, or EOF on failure
int fputc (int c, FILE* stream);

// returns value >= 0 on success, < 0 on failure
int fputs (const char* s, FILE* stream);

// returns # of elements written, or 0 on failure
size_t fwrite (const void* ptr, size_t size, size_t nmemb,

 FILE* stream);

// returns # of characters printed, or negative value on failure
int fprintf (FILE* stream, const char* format, ...);

// returns # of characters printed, or negative value on failure
int snprintf (char* str, size_t size, const char* format, ...);

