
University of Illinois at Urbana-Champaign
Final Exam, ECE 220 Honors Section

Friday 4 May 2018

 Be sure that your exam booklet has 13 pages.

 Write your name and Net ID on the first page.

 Some of C’s I/O routines and an LC-3 ISA guide are provided. Unlike the first
midterm, Patt and Patel’s Appendix A will not be available during the exam.

 Do not tear the exam apart other than to remove the last two reference pages.

 This is a closed book exam. You may not use a calculator.

 You are allowed THREE handwritten 8.5×11-inch sheets of notes (both sides).

 Absolutely no interaction between students is allowed.

 Show all work, and clearly indicate any assumptions that you make.

 Challenge problems are marked with ***.

 Don’t panic, and good luck!

Problem 1 30 points _______________________________

Problem 2 15 points _______________________________

Problem 3 20 points _______________________________

Problem 4 35 points _______________________________

Total 100 points _______________________________

Name:

Net ID:

Problem 1 (30 points): Short Answer Questions

1. (5 points) The following two sequences of instructions seem to accomplish the same task, but
sequence 1 uses fewer registers and fewer lines of code. Assume that the labels LABEL and LATER
appear somewhere in the program.

; SEQUENCE 1
 LD R1,LABEL
 BRnzp LATER

; SEQUENCE 2
 LD R0,OTHER
 LDR R1,R0,#0
 BRnzp LATER

OTHER .FILL LABEL

In some cases, sequence 1 may fail, while sequence 2 continues to work.
USING 30 WORDS OR FEWER, EXPLAIN WHY.

2. (5 points) Consider the following LC-3 code:

LOOPTOP ADD R1,R1,#0 ; question asks about this ADD
 BRnz NEXT_SECTION
 ADD R1,R1 #-1
 JSR DO_STUFF
 BRnzp LOOPTOP

Assume that NEXT_SECTION and DO_STUFF are valid labels, and that the DO_STUFF subroutine does not
modify R1. USING 10 WORDS OR FEWER, explain the purpose of the ADD instruction at the top of
the loop.

3. (5 points) USING 30 WORDS OR FEWER, explain the problem with the code below. Be specific as
to why the unacceptable code is not allowed.

class ALPHA {
protected:

 int x;
 int y;

};

class BETA : public ALPHA {
private:
 int z;

public:
 void rotate3D (double theta, double phi);

};

void applyRotation (float t, float p, ALPHA* a)
{

 BETA* b = a;
b->rotate3D (t, p);

}

Problem 1, continued:

4. (10 points) Draw the LC-3 stack frame for the member function ALPHA::func shown below. Clearly
label all elements of the stack frame, and show where R5 and R6 point during execution of the function’s
code.

class ALPHA {

private:
 char x;

public:
 ALPHA (char _x) : x (_x) { }

 char* func (const char* s, int16_t skip) {
 const char* f;

 for (f = s; '\0' != *f; ++f) {
 if (x == *f && 0 == --skip) {

 return f;
 }

 }
 return NULL;

 }
};

Problem 1, continued:

5. (5 points)*** Read the following program, then write its output below.

#include <math.h>
#include <stdio.h>

class Tricky {
private:

 int32_t a;
 int32_t b;
 Tricky (int32_t x, int32_t y) : a (x), b (y) { }
 friend Tricky operator& (const Tricky& t1, const Tricky& t2) {

 Tricky rval (t1.a * t2.b, t2.a * t1.b);
 return rval;

 }
 friend Tricky operator/ (const Tricky& t1, const Tricky& t2) {

 Tricky rval (t1.a / t2.a, t1.b / t2.b);
 return rval;

 }
public:

 Tricky (const Tricky& t) : a (t.a), b (t.a - 1) { }
 Tricky (double p) : a (15), b ((int32_t)round (p + 0.3)) { }
 Tricky (int32_t z) : a (z), b (z) { }

 void report (void);
};

int main ()
{

 Tricky one = 23.45;
 Tricky two = (5 & one);
 Tricky three = (one & (two / 10)) / two;

 one.report ();
 two.report ();
 three.report ();

 return 0;
}

void Tricky::report (void)
{

 printf ("%d\n", a - b);
}

The program’s output is …

Problem 2 (15 points): Removing Duplicates from a Linked List with Recursion

This problem is based on the following node structure:

typedef struct node_t Node;
struct node_t {

 int32_t data;
 Node* next;

};

Write a recursive function that takes one input, head, a pointer to the head (not a sentinel) of a sorted,
singly-linked list of dynamically allocated Nodes, and removes all duplicate elements in the list. A duplicate
element is any element whose data field matches that of any previous element in the linked list. A solution
is possible using nine lines of code.

For credit, your function must be recursive.

void remove_duplicates (Node* head)
{

}

Problem 3 (20 points): Generic Routines with Callbacks

In lecture, we developed a generic insertion sort subroutine using the following function signature:

int32_t isort (void* base, int32_t n_elts, size_t size,
 int32_t (*is_smaller) (void* t1, void* t2));

In this problem, you must develop a generic routine to find a pointer to a matching element in an array.
Since you all liked my horse photos, this problem focuses on horses. The following C structure defines a
horse:

typedef struct horse_t horse_t;
struct horse_t {

 char* name; // dynamically allocated
 int32_t age; // in years
 int32_t height; // in hands

};

1. (6 points) Begin by writing the compare_horses function below, which should return 1 if the two
horses are the same (all fields are the same), and 0 if they are different. You should use the standard
C library routine for string comparison:

int strcmp (const char* s1, const char* s2);

The strcmp function returns 0 iff the strings s1 and s2 are the same.

int32_t compare_horses (const void* elt1, const void* elt2)
{

}

Problem 3, continued:

// horse_t structure and compare_horses signature
// replicated for your convenience.

typedef struct horse_t horse_t;
struct horse_t {

 char* name; // dynamically allocated
 int32_t age; // in years
 int32_t height; // in hands

};
int32_t compare_horses (const void* elt1, const void* elt2);

2. (10 points) Next, write find_element, which uses a callback to a function such as compare_horses
in order to locate an element matching elt_to_find in an array array with n_elts elements of size
bytes each. The function should return a pointer to the matching element in the array, or NULL if no such
element is found.

void* find_element (void* array, int32_t n_elts, size_t size, void* elt_to_find,

 ___)
{

}

3. (4 points) Finally, call find_element on the array my_stable, which holds 42 horses, to find the
horse my_favorite.

static horse_t my_stable[42]; // file-scope, initialized elsewhere

// ... in some function with a parameter horse_t* my_favorite

horse_t* h = find_element (__ _

 __);

Problem 4 (35 points): Saving and Loading Objects

In this problem, you must write code for objects for a game written in C++. The base class is Obj, but each
other type of object has its own class derived from Obj. For simplicity, we define only one derived class:
Vehicle.

Objects in the game are kept in a list of Obj* (based on the STL list template that you used in MP12). When
the game is saved, the save function is invoked on each pointer in the list. Similarly, when the game is
loaded, the load function is invoked on each pointer in the list.

The save and load member functions for all classes take a FILE* as an input and return an int32_t. All
functions should return 0 on success, or -1 on failure.

1. (4 points) Complete the class definition for the Obj class to support the save/load functionality just
discussed. Do not include code for the functions—you must write that code in the next part.

class Obj {

private:
 uint64_t uid;

public:
 Obj (uint64_t _uid) : uid (_uid){ }

};

class Vehicle: public Obj {

private:
 char* name; // dynamically allocated using strdup; limit to 99 chars;

 // name does not contain space, tab, \n, nor \r
 int32_t type;
 double gasLvl;

public:
 Vehicle (uint64_t _uid, const char* _name, int32_t _type, double _gasLvl) :

 Obj (_uid), name (strdup (_name)), type (_type), gasLvl (_gasLvl) { }

 int32_t save (FILE* f);
 int32_t load (FILE* f);

};

Problem 4, continued:

2. (10 points) Implement the save and load methods for the Obj class below (nothing has been given—
write it all yourself).

Some constraints and hints follow:
 Do not assume that the FILE* argument is non-NULL, and be sure to check all return values.
 See the reference page at the back of the exam for some of C’s I/O library API.
 Functions for specific classes can be called using the ClassName:: prefix.
 The instance to which this points has been constructed before either function is called.

Neither function should require more than a few lines of code. Remember that both should return 0 on
success, or -1 on failure.

Problem 4, continued:

3. (12 points) Implement the save and load methods for the Vehicle class below (nothing has been
given—write it all yourself).

Some constraints and hints follow:
 Do not assume that the FILE* argument is non-NULL, and be sure to check all return values.
 See the reference page at the back of the exam for some of C’s I/O library API.
 Functions for specific classes can be called using the ClassName:: prefix.
 The instance to which this points has been constructed before either function is called.

Neither function should require more than a few lines of code. Remember that both should return 0 on
success, or -1 on failure.

Problem 4, continued:

4. (4 points) The implementation that you have just written does not allow all objects from the list to be
stored consecutively into a single file. USING 20 WORDS OR FEWER, explain the difficulty.

5. (5 points) Defining the functions to load objects from a file forces these functions to work with objects
that have already been constructed. To avoid this problem, write declarations below for alternative
functions that can accomplish the same goal. These declarations must normally appear in the class
definitions, but just write them below, showing the declarations for both Obj and Vehicle classes along
with any initializers needed.

*** You need not write the code for the functions! ***

some of the routines from C’s standard I/O library

// returns char, or EOF on failure
int fgetc (FILE* stream);

// returns s, or NULL on failure
char* fgets (char* s, int size, FILE* stream);

// returns # of elements read, or 0 on failure
size_t fread (void* ptr, size_t size, size_t nmemb, FILE* stream);

// returns # of conversions, or -1 on failure (no conversions)
int fscanf (FILE* stream, const char* format, ...);

// returns # of conversions, or -1 on failure (no conversions)
int sscanf (const char* str, const char* format, ...);

// returns c, or EOF on failure
int fputc (int c, FILE* stream);

// returns value >= 0 on success, < 0 on failure
int fputs (const char* s, FILE* stream);

// returns # of elements written, or 0 on failure
size_t fwrite (const void* ptr, size_t size, size_t nmemb,

 FILE* stream);

// returns # of characters printed, or negative value on failure

int fprintf (FILE* stream, const char* format, ...);
// returns # of characters printed, or negative value on failure
int snprintf (char* str, size_t size, const char* format, ...);

