
	 1	

ECE	220:	Computer	Systems	&	Programming	
	

Spring	2019	–	Midterm	Exam	2	
	

April	4,	2019	
	
1. This	is	a	closed	book	exam	except	for	1	sheet	of	hand-written	

notes	
2. You	may	not	use	any	personal	electronic	devices,	such	as	

cellphone	and	calculator	
3. Absolutely	no	interaction	between	students	is	allowed	
4. Illegible	handwriting	will	be	graded	as	incorrect	

	
Select	the	Lecture	Section	You	Will	Attend	to	Pick	Up	Your	Booklet	

	
[]	Prof.	Moon		 		 (BL4,			9:30	am)	
[]	Prof.	Hu		 		 (BL2,	11:00	am)	
[]	Prof.	Chen			 		 (BL,			12:30	pm)	
[]	Prof.	Bhowmik		 (BL3,			3:30	pm)	

	
Name:________________________________	

NetID:________________________________	

Room:________________________________	
	
								Question	1	(20	points):	_________________	

								Question	2	(20	points):	_________________	

								Question	3	(35	points):	A________;	B________;	C________	

								Question	4	(25	points):	A________;	B________;	C________;	D________	

	

																Total	Score:	_________________	

	 	

	 2	

Problem	1	(20	points):	Spiral	Matrix		
	
In	this	problem,	we	want	to	get	the	elements	of	an	𝑚	x	𝑛	matrix	in	clockwise	spiral	
order.	We	will	start	the	spiral	from	[0,	0].	
	
Ex	
%1 2 3
4 5 6,à	[1 2 3				6 5 4]	
	
Ex	

/
1 2
4 5

3
6

7 8 9
3	à	[1 2 3				6 9 8				7 4 5]	

	
Ex	

4
1 2 3
4 5 6
7
10

8
11

9
12

6	à	[1 2 3				6 9 12				11 10 7				4 5 8]	

	
One	approach	to	solving	this	problem	is	to	unravel	each	outer	layer	of	the	matrix	
until	the	center	is	reached.	
Below	is	the	algorithm	for	solving	this	layer-by-layer:	

• For	each	outer	layer,	iterate	through	the	elements	clockwise	starting	from	
the	top-left	corner:	

o Traverse	the	top	row	of	the	layer	
o Traverse	the	rightmost	column	of	the	layer	
o If	there	are	4	sides	to	the	layer	

§ Traverse	the	bottom	row	of	the	layer	
§ Traverse	the	leftmost	column	of	the	layer	

o Update	the	outer	layer	boundaries	

Complete	the	following	function	with	the	following	function	declaration:	
int* spiralMatrix(int* matrix, int RowSize, int ColSize);

• int*	matrix	à	The	1D	representation	of	the	input	2D	matrix	(as	seen	on	the	
left	in	the	examples)	that	will	be	converted	

• int	RowSize	à	Number	of	rows	in	the	input	matrix	
• int	ColSize	à	Number	of	columns	in	the	input	matrix	
• Returns	1D	matrix	containing	the	clockwise	spiral	

	

	 3	

int* spiralOrder(int* matrix, int RowSize, int ColSize) {
 /* Allocate space for spiral matrix */
 int* ans = (int*) malloc(sizeof(int) * RowSize * ColSize);

/* Set bounds for the outermost layer such that
 r_low is the first row */

 int r_low = 0;
 int r_high = RowSize - 1;
 int c_low = 0;
 int c_high = ColSize - 1;

 int c, r; /* Column and row indices */
 int idx = 0; /* Index for spiral matrix */

// Iterate while there are outer layers
 while (r_low<=r_high && c_low<=c_high){
 /* Traverse right/down along row/column and

 add element to spiral matrix */

 for (c = c_low;____________________; c++, idx++){

 ans[idx] = ___;
 }
 for (r = r_low + 1;____________________; r++, idx++){

 ans[idx] = ___;
 }

 /* Determine if it is possible to move left or up in

 this layer */
 if (r_low<=r_high && c_low<=c_high){
 /* Traverse left/up along row/column and

 add element to spiral matrix */

 for (c = c_high - 1;___________________; c--, idx++){

 ans[idx] = _____________________________________;
 }
 for (r = r_high;___________________; r--, idx++){

 ans[idx] = _____________________________________;
 }
 }

 /* Update bounds for iteration (row_low, row_high,
 col_low, col_high) */
 r_low++;
 r_high--;
 c_low++;
 c_high--;
 }
 return ans;
}

	 4	

Problem	2	(20	points):	Recursion	–	Merge	Sort	
	
In	this	problem,	you	need	to	implement	an	algorithm	called	‘Merge	Sort’	to	sort	the	
integer	elements	stored	in	an	array	in	ascending	order.		
	
Input	:	38,	27,	43,	3,	9,	82,	10	
	
Output	:	3,	9,	10,	27,	38,	43,	82	
	
A	schematic	diagram	of	how	merge	sort	works	can	be	found		below.	
	
	
	

	
	
	
	
We	will	be	using	two	functions	–	merge	and	mergeSort	to	implement	this	
algorithm	which	are	declared	as	following.	
	
void merge(int arr[], int l, int m, int r);
void mergeSort(int arr[], int l, int r);
	
	
	

Splitting	original	array		
into	2	subarrays		

Merge	2	sorted	
subarrays	into	1	big	
sorted	array		

mergeSort	
recursive	calls			

base	case			

merge	call		

	 5	

Now	in	this	question,	you	need	to	implement	the	mergeSort	function.	Assume	that	
the	merge	function	has	been	implemented	for	you.	Hint:	you	need	to	call	merge	in	
mergeSort.	Think	about	what	should	be	the	base	case	and	the	recursive	
case(s)	in	mergeSort.	
	
void merge(int arr[], int l, int m, int r){
 /* Implementation omitted for simplicity */
 /* It will merge two subarrays of arr[].
 First subarray is arr[l..m]
 Second subarray is arr[m+1..r] */
}

/* Use no more than 6 semicolons (;) in mergeSort, or you will
receive 0 for this question */
void mergeSort(int arr[], int l, int r){

/* l is the lowest index and r is the highest index
 of the arr to be sorted */

 /* base case */

 /* recursive case(s) */

}

int main(){
 int arr[] = {38, 27, 43, 3, 9, 82, 10};
 int arr_size = 7;
 printf(“Printing unsorted array\n”);
 printArray(arr, arr_size); /* assume printArray given */
 mergeSort(arr, 0, arr_size - 1);
 printf(“Printing sorted array\n”);
 printArray(arr, arr_size); /* assume printArray given */
 return 0;
}

	 6	

Problem	3	(35	points):	C	to	LC-3	Conversion		
Tower	of	Hanoi	is	a	mathematical	puzzle	where	we	have	three	rods	and	n	disks.	The	
objective	of	the	puzzle	is	to	move	the	entire	stack	to	another	rod,	obeying	the	following	
simple	rules:	
1)	Only	one	disk	can	be	moved	at	a	time.	
2)	Each	move	consists	of	taking	the	upper	disk	from	one	of	the	stacks	and	placing	it	on	top	
of	another	stack	i.e.	a	disk	can	only	be	moved	if	it	is	the	uppermost	disk	on	a	stack.	
3)	No	disk	may	be	placed	on	top	of	a	smaller	disk.	
Take an example for 2 disks: Let from_rod = 'A', mid_rod = 'B',
to_rod = 'C'.
Step 1 : Shift first disk from 'A' to 'B'.
Step 2 : Shift second disk from 'A' to 'C'.
Step 3 : Shift first disk from 'B' to 'C'.
The pattern here is :
Shift 'n-1' disks from 'A' to 'B'.
Shift last disk from 'A' to 'C'.
Shift 'n-1' disks from 'B' to 'C'.

// C recursive function to solve tower of hanoi puzzle
void towerOfHanoi(int n, char from_rod, char to_rod, char mid_rod) {
 if (n == 1) {
 printf("\n Move disk 1 from rod %c to rod %c", from_rod,

to_rod);
 return;
 }

towerOfHanoi(n-1, from_rod, mid_rod, to_rod);

printf("\n Move disk %d from rod %c to rod %c", n, from_rod,

to_rod);

 towerOfHanoi(n-1, mid_rod, to_rod, from_rod);
}

int main() {
 int n = 3; // Number of disks
 towerOfHanoi(n, 'A', 'C', 'B'); // A, B and C are names of rods
 return 0;
}

	 7	

Part	A	(3	points):	
For	n	=	3,	what	is	the	first	three	output?	Please	fill	in	the	blanks:	
	
Move	disk	______	from	rod	______	to	rod	______	
	
Move	disk	______	from	rod	______	to	rod	______	
	
Move	disk	______	from	rod	______	to	rod	______	
	
	
Part	B	(5	points)	
You	MUST	use	and	conform	to	the	LC-3	calling	conventions	we	have	described	in	
class.	Let	R6	be	the	stack	pointer	and	R5	the	frame	pointer.	Please	show	the	status	
of	stack	when	the	first	line	of	code	(e.g.	if(n==1))	inside	towerofHanoi	is	executed.	
Use	arrows	to	mark	where	R5	and	R6	are	pointing	to.	

Main’s Activation Record

	
	
	
	
	 	

	 8	

Part	C	(17	points):	C	to	LC-3	Conversion	
	
You	MUST	use	and	conform	to	the	LC-3	calling	conventions	we	have	described	in	
class.	You	do	not	have	to	convert	the	section	denoted	as	“Omitted	for	simplicity”.	To	
receive	full	credit,	you	MUST	complete	each	task	within	the	number	of	lines	
provided	in	each	section.	A	section	is	defined	as	a	set	of	blank	lines	without	any	
intervening	provided	code.	A	line	is	defined	as	a	single	instruction	in	LC-3.	
If	you	use	a	register	that	was	set	in	a	previous	task	without	re-loading	that	register	
from	the	stack,	you	MUST	document	(with	a	comment)	your	usage	of	that	register	
on	first	use	within	each	section.	Semicolons	setting	off	space	for	comments	have	
been	provided	on	the	given	lines.	
	
Please	finish	the	LC-3	subroutine	for	the	towerOfHanoi.	You	must	use	R2	to	represent	n,	
R3	for	from_rod,	R4	for	mid_rod,	R5	for	to_rod.		
	
towerOfHanoi

; Complete callee stack build up within 7 lines of code
; You MUST comment on each line of your code

___________________________________;

___________________________________;

___________________________________;

 ___________________________________;

___________________________________;

___________________________________;

___________________________________;

; preparation for function logic

___________________________________; get the number of disks

___________________________________; get the from_rod

___________________________________; get the to_rod

 ___________________________________; get the mid_rod

 ; Test for the termination condition (n == 1)
 AND R1, R1, #0
 ADD R1, R1, #-1
 ADD R1, R1, R2
 BRz DisplayAndReturn

ADD R2, R2, #-1

 ___________________________________; Update R2 on the stack;

	 9	

; caller built-up for first recursive call
 ; omitted for simplicity
 ; H(n-1, source, dest, helper)
 JSR towerOfHanoi

 ; Pop arguments off the stack

 ___________________________________;

 JSR Display

; caller built-up for second recursive call
; omitted for simplicity

 JSR towerOfHanoi
 BRnzp RETURN

DisplayAndReturn

; Omitted for simplicity
DisplayAndReturn

; Omitted for simplicity

RETURN
 ; Complete callee stack tear-down within 6 lines of code
 ; You MUST comment on each line of your code

___________________________________;

___________________________________;

___________________________________;

 ___________________________________;

___________________________________;

___________________________________;

 RET
	
	 	

	 10	

Problem	4	(25	points):	Concepts	
	
Part	A	(10	points):	
#include<stdio.h>	
	
int	sub1(int	arg);	
int	t	=	1;	
	
int	main	(){	
	 int	z	=	3;	
	 z	=	sub1(z);	
	 printf(“variable	z	=	%d\n”,	z);	
	 {	
	 	 int	t	=	4;	
	 	 z	=	t^2;	
	 	 printf(“variable	z	=	%d\n”,	z);	
	 }	
	 return	0;	
}	
	
int	sub1(int	fluff){	
	 int	i	=	t;	
	 return	(fluff	+	i);	
}	
	
What	is	the	output	of	the	program?	
	
First	printf	statement:	__	
	
Second	printf	statement:	__	
	
	
	
	 	

	 11	

Part	B	(5	points):	
#include<stdio.h>	
typedef	struct	recordStruct{	
			char	name[100];	
			char	phone_number[10];	
}record;	
	
int	main(){	
	 record	new_record={“Jane	Doe”,	“123456789”};	
	 record	*ptr	=	&new_record;	
	 ptr++;	
	 printf(“%c”,	&ptr);	
}	
What	is	the	output	of	the	program?	
	
Your	answer:	__	
	
	
Part	C:	True	or	False	(5	points)	
In	C,	if	an	array	is	passed	to	another	function,	the	callee	function	will	have	a	local	
copy	of	all	the	elements	of	the	array.	
	
Your	answer:	_______________	
	
	
Part	D	(5	points):	
We	have	used	the	‘->’	operator	in	MP	-	2048.	What	does	it	do?	

A. Access	the	member	of	a	structure	directly	through	a	variable	
B. Have	the	same	functionality	as	the	‘*‘	operator	
C. Dereference	a	structure	pointer	and	access	the	member	
D. Add	more	members	to	structure	

	
Your	answer:	_______________________	(select	all	that	apply)	
	
	
	 	

	 12	

	

	
	
	

	 13	

	

End	of	ECE	220	Midterm	Exam	2	
	

