
ECE	220:	Computer	Systems	and	Programming	
	

Fall	2020	–	Final	Exam	
	

	
1. This	is	a	closed-book,	closed-notes	exam	
2. Absolutely	no	interaction	between	students	is	allowed	
3. Illegible	handwriting	will	be	graded	as	incorrect	
4. You	must	put	your	name	and	NetID	on	your	submission	page	
5. Use	a	separate	page	for	each	question	
6. Submission	is	only	accepted	through	Gradescope	

	
									 	 Question	1	(30	points):	_________________	

									 	 Question	2	(30	points):	_________________									 	 	

	 	 Question	3	(10	points):	_________________																	 	 	

	 												Question	4	(15	points):	_________________									 	 						

Question	5	(15	points):	_________________	

																	 								Total	Score:	_________________	
	

Your	answers	should	be	in	the	following	format.	Each	question	should	be	on	a	
separate	page.	Write	out	the	entire	line	of	code	highlighted	in	yellow.	
	
	
On	each	page,	write	down	the	following:	
	
NetID	
	
Q#	
(1)	
(2)	
(3)	
…	 	

	
	
	
	

2	

Problem	1	(30	points):	Linked	List	
	
The	below	program,	called	“dotProd,”	walks	through	two	linked	lists	to	perform	a	
sparse	vector	dot	product.	Vectors	are	simply	a	1-dimensional	matrix,	with	only	a	
single	row	in	the	case	of	our	lists.	
	
The	vector	header	is	defined	as:	
typedef struct vector{
 int length;
 node_t *head;
} vect_t;
	
Nodes	in	the	list	are	defined	as:		
typedef struct node{
 double value;
 int col;
 struct node *next;
} node_t;

Where	col	is	the	column	of	the	given	entry.	Assume	that	the	list	is	in	order,	and	that	
any	column	without	an	entry	simply	has	a	value	of	0,	as	we	assumed	for	sparse	
matrices.	
	
The	dot	product	is	simply	a	series	of	multiply-accumulates.	For	every	column,	the	
values	in	both	vectors	are	multiplied,	and	then	added	into	the	final	result.	This	
means	that	if	a	column	does	not	exist	in	either	list,	then	the	product	must	be	zero,	
and	does	not	change	the	dot	product	at	all.	
	
Ex:		[1	2	3	4	5]	*	[1	0	2	0	3]	

[1				2				3				4				5]	
*	 	 	 	

	
[1				0				2				0				3]	

						=				1	+	0	+	6	+	0	+	15	=		22	
	
In	LL	form:		

	

	
	
	
	

3	

Fill	in	the	blanks	to	complete	the	code	
	
1
2
3
4 //sparse dot product
5 //multiply and accumulate both lists
6 //where missing elements are just zeroes
7 double dotProd(vect_t *v1, vect_t *v2){
8
9 //return 0 if dot product cannot be performed
10 //if either vector is nonexistent
11 if((1)___________________)return 0;
12 //if the lengths mismatch
13 if((2)___________________)return 0;
14
15 //start with no accumulated result
16 double result = 0.0;
17
18 node_t *h1 = v1->head;
19 node_t *h2 = v2->head;
20
21 //while both remaining lists are not NULL
22 while((3)______________){
23
24 //if they match in col
25 if((4)_____________){
26 //multiply and accumulate
27 (5)___ += (6)_________________ ;
28 h1 = h1->next;
29 h2 = h2->next;
30 }
31 else if((7)___________){ //if h1 precedes h2
32 h1 = (8)_____ ; //move h1 forward
33 }
34 else{
35 h2 = (9)_____ ; //move h2 forward
36 }
37
38 }
39 return result;
40 }
	
	
	
	 	

	
	
	
	

4	

Problem	2	(30	points):	Binary	Search	Tree	
Part	A.	
The	program,	called	“treematch,”	uses	a	post-order	traversal	of	a	tree	to	compare	
two	trees	and	determine	whether		

• the	trees	are	exactly	the	same,	including	their	values	
• the	trees’	structures	are	the	same,	but	the	values	differ	
• the	trees’	structures	differ	

	

Above	is	an	example	of	two	trees	with	different	values,	but	the	same	structure.	The	
root	node	for	the	left	tree	is	5,	while	the	root	node	for	the	right	tree	is	1.	
	

	
For	this	example,	the	structures	differ,	so	the	fact	that	the	values	differ	does	not	
matter.	The	root	node	of	the	left	tree	has	two	children,	but	the	root	node	of	the	right	
tree	has	only	a	left	child.	
	
The	returned	value	of	treematch()	is	an	enum,	defined	as:		
typedef enum{
 SAME_ALL = 0
 SAME_STRUCT_DIFF_VALUE = 1
 DIFF_STRUCT = 2
}match_t;
	
SAME_ALL	means	that	both	the	structure	and	the	values	are	the	same.	
SAME_STRUCT_DIFF_VALUE	means	the	structure	is	the	same,	but	the	values	differ.	
DIFF_STRUCT	means	that	the	structures	differ	(the	values	don’t	matter	in	this	case).	
	
The	tree	node	is	defined	as:	
typedef struct node{
 int value;
 struct node *parent, *left, *right;
}node_t;
	
You	may	assume:		
1.		That	the	tree	is	formed	correctly	(e.g.	that	parent	and	child	links	are	correct).	 	

	
	
	
	

5	

Fill	in	the	blanks	to	complete	the	code	

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include "treematch.h"
 4
 5 match_t treematch(node_t *roota, node_t *rootb) {
 6 //if both null
 7 if ((1)______________________) {
 8 //consider as having same value and structure
 9 return SAME_ALL;
10 }
11 //check if structure matches
12 if ((2)_______________________){
13 //recursively check subtrees
14 match_t mleft = treematch((3)_____________________);
15 match_t mright = treematch((4)____________________);
16
17 //if either subtree has a different structure
18 if ((5)__) {
19 return DIFF_STRUCT ;
20 }
21 //if either subtree has a different value
22 else if ((6)_____________________________________) {
23 return SAME_STRUCT_DIFF_VALUE ;
24 }
25 //remaining: the subtrees are the same
26 //check the values in the current nodes
27 if ((7) _________________________________) {
28 return SAME_ALL;
29 }
30 else {
31 return (8)_______________________ ;
32 }
33 }
34 //remaining case: one pointer exists, the other doesn't
35 return (9)_______________________ ;
36 }

	
	 	

	
	
	
	

6	

Part	B.	
Given	the	binary	search	tree	below,	write	out	the	sequence	of	nodes	visited	
during	a	pre-order	traversal.	
	

	
	
Your	Answer:		
	
	
	
	
	
Part	C.	
Where	should	a	new	node	with	the	value	‘62’	be	inserted	into	the	binary	search	tree	
shown	in	Part	B?	Draw	the	entire	tree	for	your	answer.	
	
Your	Answer:	
	 	

	
	
	
	

7	

Problem	3	(10	points):	C++	
In this problem, we are going to implement some geometric computation with the
concept of OOP.
Point is a class contains 2 data members in public: x and y in double, that is the 2D
coordinate.
There is a base class Polygon that contains a member function get_area, which is going to
compute the area for the polygon.
The class Triangle, public derived from the class Polygon, that contains 3 data members
(3 Point): point1, point2, point3 in private. Please complete the class Triangle for its
constructor, copy constructor, access function, and the get_area function.
List of the functions you need to complete:
Default constructor: initialize point1 as (0, 0), point2 as (1, 0), point3 as (0,1).
Copy constructor: copy the points value from the given triangle.
Constructor: initialize the points' value with the given points, tp1, tp2, tp3.
Access function: let the public domain be able to access the private data: point1, point2,
point3.
get_area function: compute the area of the triangle by computing the cross product of
two vectors.

• Assign v1 as a vector from p1 to p2 by subtracting p1’s coordinates from p2; v2
as a vector from p1 to p3 by subtracting p1’s coordinates from p3.

• Compute the cross product of v1 and v2. (Hint: cross product: (x1, y1) × (x2, y2)=
x1 y2 - x2y1)

• Get the absolute of this product and divide it by 2.

	

	
	
	
	

8	

#include	<iostream>		
using	namespace	std;		
class	Point	{		
	private:		
			double	x,	y;		
	public:		
			void	set_val(const	double	&	tx,	const	double	&	ty){		
					x	=	tx;		
					y	=	ty;		
			}		
			Point():x(0),y(0){};		
			Point(const	Point	&	p):x(p.x()),	y(p.y()){};		
			Point(const	double	tx,	const	double	ty):x(tx),	y(ty){};		
			~Point(){};		
			const	double	x()	const{	return	x;	}		
			const	double	y()	const{	return	y;	}		
};		
	
class	Polygon{		
	private:		
	public:		
			virtual	double	get_area()	const	=	0	;		
};		
	
class	Triangle:	public	Polygon	{		
	private:		
			Point	point1,	point2,	point3;		
	public:		
			const	Point	p1()	const;		
			const	Point	p2()	const;		
			const	Point	p3()	const;		
			Triangle();		
			Triangle(const	Triangle	&t);		
			Triangle(const	Point	&	p1,	const	Point	&	p2,	const	Point	&	p3);		
			~Triangle(){};		
			double	get_area()	const;		
};		
Triangle::Triangle(){	//	default	ctor	
	//	initial	p1	=	(0,0),	p2	=	(1,	0),	p3	=	(0,1)		
	(1)____________________		
	(2)____________________		
	(3)____________________	
}		
Triangle::Triangle(const	Triangle	&	t){	//	copy	ctor	
	(4)____________________		
	(5)____________________		
	(6)____________________		

	
	
	
	

9	

}		
Triangle::Triangle(const	Point	&	p1,	const	Point	&	p2,	const	Point	&	p3){	//	ctor	w/	given	inital	value	
	(7)____________________		
	(8)____________________		
	(9)____________________	
}		
//Access	function	
const	Point	Triangle::p1()	const{		
	return	(10)____________________		
}		
const	Point	Triangle::p2()	const{		
	return	(11)____________________		
}		
const	Point	Triangle::p3()	const{		
	return	(12)____________________	
}		
// compute area function	
double	Triangle::get_area()	const{		
	Point	v1((13)______________________________);	//	vector	p1	-->	p2	
	Point	v2((14)______________________________);	//	vector	p1	-->	p3	
	double	cross_product	=	(15)______________________________		
	if	(cross_product	<	0)	{	//	compute	the	absolute	value	
			cross_product	=	-cross_product;		
	}		
	return	0.5*cross_product;		
}		
	
int	main(){		
	Polygon*	ptr;		
	
	Triangle	tri0;		
	ptr	=	&	tri0;		
	std::cout	<<	"tri	0	area	:"<<ptr->get_area()<<std::endl;		
	
	Point	p1(1,1);		
	Point	p2(4,4);		
	Point	p3(4,1);		
	Triangle	tri1(p1,	p2,	p3);		
	ptr	=	&tri1;		
	std::cout	<<	"tri1	area	:"<<ptr->get_area()<<std::endl;		
	
	Triangle	tri2(tri1);		
	ptr	=	&tri2;		
	std::cout	<<	"tri2	area	:"<<ptr->get_area()<<std::endl;		
	
	return	0;		
}	

	

	
	
	
	

10	

Problem	4	(15	points):	C	to	LC-3	Conversion	
	
In	this	problem,	you	will	translate	a	recursive	C	function	SumPostOrder,	which	
traverses	the	binary	tree	in	post-order	and	adds	the	value	of	each	node	in	the	tree	
and	prints	the	current	sum,	to	LC3.		
	
You	can	assume	each	memory	location	stores	16	bits.	Both	integers	and	pointers	are	
also	16	bits.		
	
Example:		

	
	
Input:	root	of	binary	tree			 Output:	80		
	
	
	
	
	
	
	
	 	

	
	
	
	

11	

C	code:		
typedef struct Node{
 int value;
 Node* left;
 Node* right;
}

int SumPostOrder(Node* node) {
 int sum = 0;
 /* Base case */
 if (node == NULL){

 return sum;
}

/* Recursive calls */
sum += SumPostOrder((node->left);

 sum += SumPostOrder(node->right);
 sum += node->value;
 return sum;
}
	
Recalled	that	a	function’s	activation	record	has	the	following	format:	

Local	Variables	

Caller’s	Frame	Pointer	

Return	Address	

Return	Value	

Arguments	

	
Register	map	for	this	problem:		
	

R0	 NODE	

R1	 SUM	

R2	 TEMP	

R5	 FRAME	POINTER	

R6	 STACK	POINTER	

R7	 RETURN	ADDRESS	

	 	

	
	
	
	

12	

Requirements:		
You	MUST	follow	the	run-time	stack	convention	presented	in	lectures.	
You	MUST	finish	your	code	within	the	number	of	provided	lines.	
You	MUST	use	the	register	map	as	specified	above.	No	other	registers	may	be	used.		
	
	
SUM_POST_ORDER
; callee set-up
(1) _____________
(2) _____________
(3) _____________
(4) _____________
;
; initialize sum
(5) _____________
;
; check base case
(6) _____________ ; load NODE
(7) _____________ ; check NODE==NULL
;
; SumPostOrder(node->left)
(8) _____________ ; load NODE->left to TEMP
(9) _____________ ; update stack pointer
(10) _____________ ; push argument
JSR SUM_POST_ORDER
(11) _____________ ; store return value in TEMP
(12) _____________ ; add TEMP to SUM
(13) _____________ ; stack teardown
;
; SumPostOrder(node->right)
; second recursive call omitted for simplicity
;
; add current node’s value to sum
(14) _____________ ; load NODE->value to TEMP
(15) _____________ ; add NODE->value to SUM
;
DONE
(16) _____________ ; store return value
; callee tear-down
; omitted here for simplicity
RET
	
	
	
	 	

	
	
	
	

13	

Problem	4	(15	points):	Concepts	

Part	A	&	B	
Recall	in	MP8	-	2048,	we	worked	with	a	dynamically	allocated	game	struct:	
typedef int cell;
typedef struct{
 int rows;
 int cols;
 cell* cells;
 int score;
} game;
game* make_game(int rows, int cols){
 game* mygame = (game*)malloc(sizeof(game));
 mygame->cells = malloc(rows * cols * sizeof(cell));
 // rest of the function is omitted
}

Part	A:	Why	is	it	necessary	that	the	following	function	is	executed	after	each	game	
finishes?	
void destroy_game(game* cur_game){
 free(cur_game->cells);
 free(cur_game);
 return NULL;
}

Your	Answer	(use	no	more	than	20	words):		

Part	B:	It	is	not	possible	to	adjust	the	size	of	the cells array	after	it	has	been	
created.	(True	or	False)	

Your	Answer:		 	 True	 	 False		
	
	
	

	
	
	
	

14	

Part	C		
Given	the	C++	classes	below,	answer	the	question	in	Part	C.	Note	that	the	code	is	
different	from	what	was	provided	for	MP12.		
1 class Number{
2 public:
3 double magnitude, phase;
4 Number();
5 // more functions omitted
6 virtual Number operator + (const Number& arg) = 0;
7 };
8 class RealNumber : private Number{
9 public:
10 double real_component;
11 RealNumber();
12 RealNumber operator + (const RealNumber& arg);
13 // more functions omitted
14 };

In	line	12,	how	is	the	argument arg passed	to	the	operator	overload	function?	
Choose	the	correct	answer	from	the	following	options.	

1.	By	value	 	 	 2.	By	pointer		 	 3.	By	reference	
	
Your	Answer	for	Part	C:		

	
	

	
	
	
	

15	

	
	
	

	
	
	
	

16	

	
	

End	of	ECE	220	Final	Exam	

