ECE 220: Computer Systems and Programming

Fall 2020 - Midterm Exam 2

November 5, 2020

This is a closed-book, closed-notes exam

Absolutely no interaction between students is allowed
[llegible handwriting will be graded as incorrect

You must put your name and NetID on your submission page
Use a separate page for each question

Submission is only accepted through Gradescope

Nk WN

Question 1 (40 points):

Question 2 (40 points):
Question 3 (10 points): 1) ; 2)
Question 4 (10 points): 1) ; 2)

Total Score:

Write down your answers in the following format. Each question should be on
a separate page.

Name:
NetID:

Q1 (write down the # and entire line of code highlighted in yellow)

Q2 (write down the # and entire line of code highlighted in yellow)

Problem 1 (40 points): Array

A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same
value. Given an mXn matrix, your program needs to return 1 if the matrix is
Toeplitz, otherwise return 0. Note the matrix is stored as a 1-D array.

Example 1:

Input: m=3, n=4

matrix=[1, 4, 3,9,
6,1,4,3,
56,1,4]

Output: 1

Example 2:

Input: m=2, n=2

matrix=[1, 3,
3,2]

Output: 0

int is toeplitz (int* matrix, int m, int n){
int r, c;
// Loop through each row
(1) for (; ; rt+) {
// Loop through each column
(2) for (g ;o octt) |
if (r > 0 && ¢ > 0){
// linear idx of cell (r, c)
(3)int cur idx = g
// linear idx of cell (r - 1, c - 1)
(4)int upper left idx = 2
// 1f cell (r,c) and cell (r-1,c-1) is not equal, return 0
(5)1f()
(6)

4

Problem 2 (40 points): Recursion

In this problem, we compute the area of a fractal shape (that is, a recursively defined
shape) and count the number of shapes in this fractal.

The fractal follows these rules.
Given a positive integer r:
If rmod 3 is 0:

[t is a circle with radius = r, and it grows two squares with side length = r-1
If rmod 3is 1:

[tis a 90-45-45 triangle with two equal sides = r, and it grows a circle with
side length = r-1
If rmod 3 is 2:

[t is a square with sides = r, and it will grow a 90-45-45 triangle such that the
equal sides have length=r-1
If ris 0: no new shape is appended.

We want to compute the total area of this fractal shape and also keep count of how
many shapes are in this fractal, including circles, triangles, and squares. The
formulas for computing the areas of different shapes are listed below.

Area of a circle with radius r: A = 772

Area of a 90-45-45 triangle with two equal sides of 1: A = %rz

Area of a square with sides of r: A = r?

The function float area(int r, int* count) takes an integer and an integer pointer; it
returns a floating point value.

Inputs
r: radius of a circle, or side length of a square, or equal side length for a 90-45-45

triangle.
count: count for the number of shapes in the fractal (note that it is being passed as a
pointer).

Output
area: accumulated area for all the shapes in the fractal

For example, for r = 9 the area is ~=938.760986 (m is given in the code) and the
count = 35 for the number of shapes in the fractal.

radius =
r-3(mod 3 ==0)

side =r-2 (mod 3 ==1)

side =r-1

(mod 3 == 2 side =r-1

(mod3==2

radius =r
(mod 3 ==0)]

#include <stdio.h>

#include <stdlib.h>

static float PI=3.14159265358979323846;

// compute the fractal shape area, i.e. area is the output

// r is the parameter for each shape, count is the number of shapes
float area(int r, int* count) {

// deal with r = 0

float total area= 0.0, curr_area = 0.0;

if((3)){ // mod 3 is O
curr area = (4) ;
total area = curr area + (5) g
}
else if ((6)){ // mod 3 is 1
curr area = (7) ;
total area = curr area + (8) ;

}
else { // mod 3 is 2

curr_area = (9) ;

total area = curr _area + (10) ;

// update count for the total number of shapes

(11) 5

return (12) ;
}
int main () {

int r1=9, r2=27;
int count = 0;

float area 9 = (13) ;

printf ("r=9: %£f, number = %d\n", area 9, count);
count = 0;

float area 27 = (14) g

printf ("r=27: %£f, number = %d\n", area 27, count);

return O;

Problem 3 (10 points): Debug

The below program contains two functions, main() and norm2(). norm2() calculates
the Euclidean norm, or 2-norm, of a one-dimensional array A. That is, given an array
of length n, it returns:

Jez a3+)

In order to test norm2(), we have written a main() function. We successfully
compiled the program, which is in file normz2.c, using the command:

gcc -g -00 -1m norm2.c -0 norm2

We tested norm2() on the 5-item array [1,1,2,0,0], and we expected to get 6 ~
2.44.

When we run the program, however, it instead prints 5.

There are two (2) lines with bugs in this program. For each bug, you may do
either (or both):
a) Give the bug’s line number and describe its effect.
b) Give one (1) line or function where you would set a breakpoint in GDB.
Explain both your reasoning and what you would examine at that breakpoint.

Each bug is graded separately.

(a) and (b) will be graded as equivalent and worth equal points when equally
correct. For a given bug, if you provide both (a) and (b), we will go with the
answer that scores better (so coming up with a good breakpoint first may be a
good idea).

Example: good explanation for a GDB breakpoint

Breakpoint: line 1005

Reason: In line 1005, which is part of function foo, the program calls function bar
and assigns its return value to variable baz. We know from the problem statement
that the return value of function bar is correct, but when we return baz in line 1009,
it's wrong. So we need to track what happens to baz from line 1005 to 1008. I would
step through lines 1005 to 1008, printing baz each time.

For this problem, you may assume:

1. That the use of sqrt(x) in line 23 is correct.

2. That using the compilation instruction provided above, the code compiles without
warnings.

Code:

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4

5 double norm2 (int *arr, int n); //declaration
6

7 int main () {

8 int n = 5;

9 int arr[] = {1,1,2,0,0};

10 double res = norm2 (arr, n);

11 printf ("%d\n", res);

12 return O;

13 }

14

15

16 //instantiation

17 double norm2 (int *arr, int n) {

18 int 1i;

19 double squaresum = 0;

20 for (1 = 1; 1 <= n; i++) {

21 squaresum += arr[i]*arr[i]; // (A 1i)"2 added
22 }

23 double sgt = sqgrt(squaresum); //take square root
24 return sqgt;
25}

1) What is the bug with the smaller line number, and its effect, OR where
would you put a breakpoint to find it, and what would you check at that
breakpoint?

Your Answer:

2) What is the bug with the larger line number and its effect, OR where would
you put a breakpoint to find it, and what would you check at that breakpoint?

Your Answer:

Problem 4 (10 points): Concepts

1) Run-Time Stack Part A

Recall in MP7 - Sudoku Solver, the function is_val_valid is used by the function
solve_sudoku to determine whether a value can be filled in a specific cell on the
board. is_val_valid then uses three other functions to determine the validity of a
value at a given cell. An implementation for is_val_valid is provided, along with
relevant parts of solve_sudoku. Assume all functions used are correctly
implemented and the provided code is correct. Given that the function
is_val_in_3x3_zone is currently being executed, which functions’ activation
records are currently on the run-time stack? Fill in your answer on the stack. An
example is given on the left.

int is val valid(const int wval, const int i, const int j,
const int sudokul[9]1[9]) {
if(is _val in row(val, i, sudoku)) {
return 0;
} else if(is val in col(val, 3Jj, sudoku)) {
return 0;
} else if(is_val in 3x3 zone(val, i, Jj, sudoku)) {
return 0;
} else {
return 1;
}
}

int solve sudoku(int sudoku[9] [9]) {
int 1, j, num;
// Parts of the function omitted for simplicity
for(num = 1; num <= 9; num++) {
if(is _val valid(num, i, Jj, sudoku)) {
// omitted for simplicity
}

}
// Rest of the function omitted for simplicity

Example Run-Time Stack Fill in your answer here

foo’s activation record

main’s activation record solve sudoku’s activation record

2) Run-Time Stack Part B

Below code attempts to swap the values in variables first and second. We know that
the implementation is incorrect and the values in first and second will not change
after line 9 is executed. Explain why using what we learned about the run-time
stack and function calls in C.

void swap (int a, int b) {
int temp = a;
a = b;
b temp;

}

int main () {

int first = 1;

int second = 2;

swap (first, second);
return 0;

R P O Ooo Jo Ul wNE

= O
—~

Your Answer:

10

IETY 2 The Standard ASCII Table

ASCII ASCII ASCII ASCII
Character Dec Hex | Character Dec Hex | Character Dec Hex | Character Dec Hex
nul 0 00 sp 32 20 & G6d 40 . 96 &0
soh 1 01 1 33 21 A &5 11 a a7 &l
stx 2 02 L 34 22 E B 42 b Q8 &2
etx 3 03 # 35 23 C &7 43 c 99 &3
aot 4 04 5 36 24 D 6B 44 d 100 &4
ang 5 05 % 37 25 E 69 45 =] 101 &5
ack & 06 & 3B 26 F 70 a6 f 102 &6
bel Fi o7 ' 39 27] 7l 47 g 103 &7
bs B 08 (40 28 H T2 43 h 104 &8
ht 9 09] 41 29 I 73 49 i 105 &9
1f 10 04 w a2 24 J 74 a4 j 106 6&A
VL 11 0B + 43 2B K i5 4B k 107 &B
ff 12 oc ' 44 2C L 76 4C 1 108 &C
cr 13 oD - 45 2D M I7 4D m 109 &D
20 14 0E . a6 2E N 7B 4E n 110 &E
=i 15 OF ! a7 2F 0 79 aF] 111 &F
dle 16 10] 4B 30 P BO 50 P 112 70
dcl 17 11 1 49 31 Q Bl 51 q 113 71
dc2 18 12 2 50 32 R B2 52 r 114 72
dc3 19 13 3 51 33 =] B3 53 = 115 73
dca 20 14 4 2 34 T B4 54 L 116 74
nak 21 15 5 53 35 U BS 55 u 117 75
=yl 22 16 [= 54 36 v B& 56 v 118 T&
ath 23 17 7 kb a7 W =r 57 W 119 77
can 24 18 B b 38 X Be 58 x 120 78
em 25 19 9 K7 39 Y B9 59 ¥ 121 79
sub 26 1A : 5B 3A z Qo 5A = 122 TA
asc 27 1B : EQ 3B [a1 5B { 123 TB
fs 2B 1C = &0 ac 1Y Q2 5C | 124 TC
gs 29 1D = 61 3D 1 93 5D } 125 7D
s 30 1E = 62 3E - Q4 5E - 126 TE
us 31 1F ? B3 3F _ a5 5F del 127 TF

LC-3 Instructions

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

T T T T T
ADD | 0001 | DR | SR1 |0| 00] SR2 | ADD DR, SR1, SR2
P i L L L
DR « SR1 + SR2, Setcc
T T T T T T T
ADDI 0001 | DR | SR1 |1| imm5 |ADDDR, SR1, imm5
L g 3) L e g
DR « SR1 + SEXT(imm5), Setcc
T T T T T =Y
AND | 0101 | DR | SR1 IOI 00] SR2 | AND DR, SR1, SR2
gy i L L L
DR « SR1 AND SR2, Setcc
L L T U &
AND| 0101 | DR | SR1 |1| imm5 | AND DR, SR1, imm5
b S | 1 1 1 4 Y | | Y S . |
DR « SR1 AND SEXT(imm5), Setcc
T T T T T T T
BR | 0000 |nlz]p| PCoffsetd | BR{nzp} PCoffset9
L P AR
((n AND N) OR (z AND Z) OR (p AND P)):
PC « PC + SEXT(PCoffset9)
T 7T T T T T T T T 7T
JMF’l 1100 I 000 IBaseRl 000000 | JMP BaseR
TR Py R
PC « BaseR
T T T T T T T T
JSR| 0100 |1I PCoffset11 | JSR PCoffset11
=y T T B 1)) P
R7 « PC, PC « PC + SEXT(PCoffset11)
T T T T T L L] | Y |
TRAP| 1M1 | 0000 | trapvect8 | TRAP trapvect8
P fop g I L) TS

R7 « PC, PC « M[ZEXT (trapvect8)]

I, 5 R 4 B F)

T ™
LD I 0010 | DR | PCoffsetd

DR « M[PC + SEXT(PCoffset9)], Setcc

T T T T T T T T
LDI | 1010 | DR | PCoffset9
L g i L

DR « M[M[PC + SEXT(PCoffset9)]], Setcc

T T T T
LDR | 0110 | DR IBaseRI offseté
L L i TR

DR « M[BaseR + SEXT(offset6)], Setcc

L T T T T T T
LEA | 1110 | DR | PCoffset9
L1 L1 L1

DR « PC + SEXT(PCoffset9), Setcc

T T T T T T T
NOT l 1001 I DR] SR] 1M
PHSE B L M M

DR « NOT SR, Setcc

L e fo ot e e |

— T T
ST I 0011 I SR I PCoffset9
L1 L1 A g iy

11

M[PC + SEXT(PCoffset9)] « SR

T T T T T T T
SR I PCoffset9
L L

e A U B R ¢

T
STI l 1011
P

M[M[PC + SEXT(PCoffsetd)]] « SR

=Tt T T | g
STR I 0111 | SR | BaseR | offseté
i R P gy L g

M[BaseR| + SEXT(offset8)] «— SR

LD DR, PCoffset9

LDI DR, PCoffset9

LDR DR, BaseR, offset6

LEA DR, PCoffset9

NOT DR, SR

ST SR, PCoffset9

STI SR, PCoffset9

STR SR, BaseR, offseté

End of ECE 220 Midterm Exam 2

12

