
ZJU-UIUC Institute
Final Exam, ECE 220

Tuesday 29 December 2020

 Be sure that your exam booklet has 13 pages.

 Write your name, Student ID, and lab section TA name on the first page.

 Some of C’s I/O routines and an LC-3 ISA guide are provided. Unlike the first
midterm, Patt and Patel’s Appendix A will not be available during the exam.

 Do not tear the exam apart other than to remove the last two reference pages.

 This is a closed book exam. You may not use a calculator.

 You are allowed THREE A4 sheets of notes (both sides).

 YOU MAY NOT USE EXTRA PAPER! WRITE ON THE EXAM!

 Absolutely no interaction between students is allowed.

 Show all work, and clearly indicate any assumptions that you make.

 Challenge problems are marked with ***.

 Don’t panic, and good luck!

Problem 1 21 points _______________________________

Problem 2 16 points _______________________________

Problem 3 25 points _______________________________

Problem 4 20 points _______________________________

Problem 5 18 points _______________________________

Total 100 points _______________________________

Name (pinyin and Hanzi):
SOLUTION

Student ID: Lab TA Name:

2

Problem 1 (21 points): Short Answer Questions

1. (5 points) A bad TA compiles the code below for LC-3, then types in some Special Input™ for the

scanf. In response, the program prints out “weird” instead of “main”, then terminates. Based on your
knowledge of the LC-3 calling convention, and USING 20 WORDS OR FEWER, explain what
happened.

___Special Input™ overwrote return address on stack with address of weird__________________

__

#include <stdio.h>
int weird () {
 printf ("weird");
 return 0;
}
int run () {
 char buffer[10];
 scanf ("%s", buffer);
 return 0;
}
int main() {
 run ();
 printf ("main");
 return 0;
}

2. (6 points) Consider the C++ declarations shown below.

class Base {
 int A;
protected: int B;
private: int C;
public: int D;
};

class Derived: public Base {
private: int E;
 static void aFunction (void);
public: int F;
};

Derived instance;

void anotherFunction (void);

1. (3 points) CIRCLE ALL FIELDS of instance that are accessible by name

within the function Derived::aFunction.

A B C D E F

2. (3 points) CIRCLE ALL FIELDS of instance that are accessible by name
within the function anotherFunction.

A B C D E F

3

Problem 1, continued:

3. (5 points) The Linux man page gives the following function signature for the C library’s

implementation of quicksort.

void qsort (void* base, size_t nmemb, size_t size,
 int (*compar) (const void*, const void*));

Note the callback argument compar used to compare two elements of the array base. This function
must compare two elements of the array and return -1 if the first element should appear before the
second, 0 if the two elements are the same, and 1 if the second element should appear before the first.

Your friend has implemented a sophisticated ranking algorithm for Blocky (MP6) players based on the
use of a deep neural network (DNN), and has provided the function

int32_t player_get_rank (player_t* p);

that executes the DNN to calculate a player’s rank. The function takes about five seconds to execute.
To sort the players in decreasing order or rank, your friend has implemented the function below for use
with quicksort:

int player_sort_by_rank (const void* p1, const void* p2)
{
 int32_t r1 = player_get_rank (p1);
 int32_t r2 = player_get_rank (p2);

 if (r1 > r2) { return -1; }
 if (r2 > r1) { return 1; }
 return 0;
}

Unfortunately, qsort seems to take quite a long time when executed with this function on an array of
1,000 players. USING 20 OR FEWER WORDS, suggest a way in which your friend can improve the
performance by about a factor of 10.

___Calculate rank once for each player and store in a new field of player_t___________________

__

4

Problem 1, continued:

4. (5 points) Consider the following C++ code:

#include <math.h>
#include <stdio.h>

class ALPHA {
 private:
 int val;
 public:
 ALPHA (int start) : val (start) { }
 void add (int amt) { val += amt; }
 void add (double amt) { add (ceil (amt)); }
 int value (void) { return val; }
};

int
main ()
{
 ALPHA a (40);

 a.add (1.5);

 printf ("%d\n", a.value ());

 return 0;
}

Your friend wrote the code above, compiled it, and executed it. Unfortunately, rather than printing 42 as
your friend expects, the program crashes. USING 15 WORDS OR FEWER, explain why.

_____infinite recursion to ALPHA::add with double argument______________________________

__

5

Problem 2 (16 points): Slow Sort

Quick Sort is quick, but difficult to understand. Instead, you must implement the "Slow Sort1"
algorithm. As you know, writing a recursive function requires a “leap of faith,” which means that
you believe that your recursive calls work even before you have finished implementing the
function. Slow Sort relies on this idea.

slowsort(A, i, j): I am asked to sort 𝐴[𝑖 … 𝑗] from small to large. Here is my strategy:

 If 𝑖 ≥ 𝑗, nothing needs to be done. I will just go home and sleep.
 Otherwise, split the list by half: 𝐴[𝑖 … 𝑚] and 𝐴[𝑚 + 1 … 𝑗], where 𝑚 = (𝑖 + 𝑗) / 2.
 I call slowsort to sort the first and the second half for me. I believe it works.
 Both halves are sorted now. Let me compare the first one of each half, 𝐴[𝑖] and 𝐴[𝑚 + 1],

and swap them if necessary. Now 𝐴[𝑖] must be the smallest one in the whole list!
 I have sorted one element. I feel tired now.
 How about the rest 𝐴[𝑖 + 1 … 𝑗]? Humm… Let me just call slowsort to sort them!
 Look, the list is sorted!

Based on the description above, complete the following code that performs Slow Sort on values
stored in a singly linked list (the same input as the Merge Sort problem in the last midterm.)

1 Andrei Broder and Jorge Stolfi. “Pessimal Algorithms and Simplexity Analysis,” 1986.

6

Problem 2, continued:

The linked list is constructed using the following structure:

typedef struct element_t element_t;
struct element_t {
 int32_t value;
 // other fields not relevant to this problem
 element_t* next;
};

Complete the implementation below using the following helper function and using only the lines
provided:

// Divide a linked list starting at head into two equal halves (from MT2).
void divide_list (element_t* head, element_t** firstp, element_t** secondp);

// Swap *a and *b (simply swaps the two element_t*’s; does NOTHING else).
void swap (element_t** a, element_t** b);

element_t* slow_sort (element_t* head) {
 element_t* fst; element_t* sec; element_t* last;

 // If empty list or only one element, done!
 if (NULL == head || NULL == head->next) {
 return head;
 }
 // Otherwise, divide the list into two sublists of equal length.
 divide_list (head, &fst, &sec);

 // Sort each half.

 fst = slow_sort (fst);

 sec = slow_sort (sec);

 // If fst is larger than sec, swap them (you MUST use the swap function).

 if (fst->value > sec->value) {

 swap (&fst->next, &sec->next); // as shown; not needed for correctness

 swap (&fst, &sec);
 }

 // Reconnect fst and sec into a single list.

 for (last = fst; NULL != last->next; last = last->next) { }

 last->next = sec;

 __

__

__

 // Sort the rest of the list.

 fst->next = slow_sort (fst->next);
 // Return the sorted list.
 return fst;
}

7

Problem 3 (25 points): Processing a File with I/O

Your task is to write a multi-function calculator in C to process files. The executable file produced has the
name calculator, with the following command-line argument format:

./calculator <operation> <input filename> <output filename>

The operation is specified by an integer (0, 1, or 2), which is used as an index into the function pointer array
func_arr defined as shown below. All other indices are invalid.

int add (int a, int b) {return a + b;}
int magic_1 (int a, int b); // definition not needed for problem
int magic_2 (int a, int b); // definition not needed for problem

typedef int (*operation_t) (int, int);
static operation_t func_arr[3] = {&add, &magic_1, &magic_2};

The number of lines in each input file varies, with each line contains two integers and a space between them.
You may assume that the input file has the correct format (as specified). One example of the content of a
input file input.txt:
1 1
2 3
4 5

The output file should have the same number of lines as the input file. Every line of the output file should
contain one integer, which is the result of applying the operation on the two integers of the corresponding
line of the input file. For example, if the following command is run (on the example input above),

./calculator 0 input.txt output.txt

the program should produce a file called output.txt, with content:
2
5
9

Complete the code below by writing portions of code on the following page, using only the lines
provided. Return 0 for success, or -1 for any failure. Be sure to check for all error conditions. See the
reference sheet for C’s I/O functions.

//... some headers and other information omitted
int main(int argc, char* argv[]){

 // Check the command line arguments

if (argc != 4 || strlen(argv[1]) != 1 ||
 argv[1][0] > '2' || argv[1][0] < '0') {return -1};

// *** Your code for Part 1 is inserted here ***

FILE* in_file;
FILE* out_file;
// *** Your code for Part 2 is inserted here ***

 int a, b;

// *** Your code for Part 3 is inserted here ***

// *** Your code for Part 4 is inserted here ***
}

8

Problem 3, continued:

1. (3 points) Read the argument checking code (given to you), then write an expression to calculate the

operation index given to the program and store it in the variable func_index.

int func_index = argv[1][0] – '0' ;

2. (7 points) Write the code to prepare streams for I/O files based on the command-line arguments.

in_file = fopen (argv[2], "r");

if (NULL == in_file) {

 return -1;

}

out_file = fopen (argv[3], "w");

if (NULL == out_file) {

 fclose (in_file);

 return -1;

}

3. (10 points) Write the code to apply the chosen operation to every line of the input file and write the

result to the output file.

while (2 == fscanf (in_file, "%d%d", &a, &b)) {

 if (0 > fprintf (out_file, "%d\n", (*(func_arr[func_index])) (a, b))) {

 fclose (in_file);

 fclose (out_file);

 return -1;

 }

}

4. (5 points) Write the code to release resources and return success.

fclose (in_file);

fclose (out_file); // can check return value here instead of fprintf above

return 0;

9

Problem 4 (20 points): Lists and Hierarchies of Structures

Recall that in class we developed container code for cyclic, doubly-linked lists with sentinels. Later, you
made use of the code in a lab. The node structure for the list (using a shorter name) appears below, and a
diagram of the structure in memory when compiled for LC-3 appears to the right (with offsets).

typedef struct dl_t dl_t;
struct dl_t {
 dl_t* prev; // previous element in the list
 dl_t* next; // next element in the list
};

1. (10 points) Implement the function dl_length shown below as an LC-3 assembly subroutine.

The diagram to the right of the code shows the stack on entry to your subroutine.
 Your code may change only R0, R1, R2 and R3.
 Do NOT set up a stack frame. The local variable count can be kept in

a register of your choice (R0-R3).
 USE 15 OR FEWER INSTRUCTIONS (not counting RET, provided for you).
 Push the return value onto stack before returning.

int16_t dl_length (dl_t* head) {
 int16_t count = 0;
 for (dl_t* elt = head->next; elt != head; elt = elt->next) {
 ++count;
 }
 return count;
}

DL_LENGTH AND R0,R0,#0 ; count

 LDR R1,R6,#0 ; head

 LDR R2,R1,#1 ; elt

 NOT R1,R1 ; R1 <- -head

 ADD R1,R1,#1

LOOP ADD R3,R1,R2 ; R3 <- elt – head

 BRz DONE

 ADD R0,R0,#1 ; count++

 LDR R2,R2,#1 ; elt = elt->next

 BRnzp LOOP

DONE ADD R6,R6,#-1 ; return count

 STR R0,R6,#0

 RET

10

Problem 4, continued:

typedef enum {FISH, DOG, CAT, BIRD, AARDVARK, NUM_ANIMAL_TYPES} animal_type_t;

typedef struct animal_t {
 dl_t dl; // for inclusion in doubly-linked list
 char* name; // animal’s name (dynamically allocated)
 animal_type_t type; // type of animal
} animal_t;

typedef struct bird_t {
 animal_t anm; // a bird is a type of animal
 int32_t migratory; // 1 for migratory, 0 for not migratory
 double speed; // speed of the bird (always positive)
} bird_t;

// definitions of other animal types omitted

2. (10 points) Now we have a bunch of animals contained in a doubly-linked list. Given head, a pointer

to the sentinel for the list, we want to find the fastest migratory bird in the list. If the list contains no
migratory birds, the function should return NULL. You may assume that no two birds have the same
speed. Complete the C function below, using no more lines than are provided for you.

bird_t* find_fastest_migratory_bird (dl_t* head) {

 bird_t* rval = NULL; // return value
 double max = -1; // maximum speed seen
 animal_t* a;
 bird_t* b;

 for (dl_t* elt = head->next______________; head != elt___________________ ;

 elt = elt->next________________) {

 a = (animal_t*)elt;

 b = (bird_t*)elt;

 if (BIRD == a->type && b->migratory && b->speed > max) {

 rval = b;

 max = b->speed;

 }

 __

 __

 __

 __

 __

 __
 }
 return rval;
}

11

Problem 5 (18 points): Constructors, Destructors, and Operator Overloading

Read the following C++ code and answer the questions.

#include <stdio.h>

class Mystery {
private:
 int x;
public:
 Mystery () { printf("M"); }
 Mystery (int xval) : x(xval + 1) { printf("Y"); }
 const Mystery& operator= (int xval) {
 xval = 1;
 printf("S");
 return *this;
 }
 Mystery (const Mystery& m) : Mystery(m.x + 10) { printf("T"); }
 ~Mystery() { printf("E"); }
};

Mystery c, d;

int main() {
 printf("---START---\n");
 c = d = 0;
 printf("\n");
 Mystery a = 42;
 printf("\n");
 Mystery b = a;
 printf("\n");
 c = a;
 printf("\n---END---");
 return 0;
}

1. (12 points)*** The output of this program has EXACTLY SIX LINES. What is the output?

Write “blank” for a blank line.

Line 1: MM---START---

Line 2: S

Line 3: Y

Line 4: YT

Line 5: blank

Line 6: ---END---EEEE

2. (6 points) What are the following values immediately before execution of “return 0”?

Write “bits” for any value that can’t be determined.

a.x = ___43________ b.x = ___54________ c.x = ___43________ d.x = ___bits______

12

some of the routines from C’s standard libraries

// returns new stream, or NULL on failure
FILE* fopen (const char* path, const char* mode);

// returns 0 on success, or EOF on failure
int fclose (FILE* stream);

// returns char, or EOF on failure
int fgetc (FILE* stream);

// returns s, or NULL on failure
char* fgets (char* s, int size, FILE* stream);

// returns # of elements read, or 0 on failure
size_t fread (void* ptr, size_t size, size_t nmemb, FILE* stream);

// returns # of conversions, or -1 on failure (no conversions)
int fscanf (FILE* stream, const char* format, ...);

// returns # of conversions, or -1 on failure (no conversions)
int sscanf (const char* str, const char* format, ...);

// returns c, or EOF on failure
int fputc (int c, FILE* stream);

// returns value >= 0 on success, < 0 on failure
int fputs (const char* s, FILE* stream);

// returns # of elements written, or 0 on failure
size_t fwrite (const void* ptr, size_t size, size_t nmemb,
 FILE* stream);

// returns # of characters printed, or negative value on failure
int fprintf (FILE* stream, const char* format, ...);

// returns # of characters printed, or negative value on failure
int snprintf (char* str, size_t size, const char* format, ...);

// returns length of string s, not counting terminal NUL
size_t strlen (const char* s);

// rounds x up to the next integral value (smallest integer >= x)
double ceil (double x);

