
ZJU-UIUC Institute
First Midterm Exam, ECE 220

Thursday 29 October 2020

 Be sure that your exam booklet has 10 pages.

 Write your name, student ID, and lab section TA name on the first page.

 Do not tear the exam apart other than to remove the reference sheet.

 This is a closed book exam. You may not use a calculator.

 Challenge problems are marked with ***.

 You are allowed one handwritten A4 sheet of notes (both sides).

 The last page of the exam gives RTL for LC-3 instructions (except JSRR).
Copies of Patt & Patel’s Appendix A are also available during the exam.

 Absolutely no interaction between students is allowed.

 Show all work, and clearly indicate any assumptions that you make.

 Don’t panic, and good luck!

Problem 1 22 points _______________________________

Problem 2 22 points _______________________________

Problem 3 24 points _______________________________

Problem 4 17 points _______________________________

Problem 5 14 points _______________________________

Correct Room 1 point _______________________________

Total 100 points _______________________________

Name (pinyin and Hanzi):
SOLUTION IS IN RED

Student ID: Lab TA Name:

Page 2

Problem 1 (22 points): Short Answer Questions and I/O

1. For MP2, your smart friend decided to write a subroutine called PRINT_WITH_VL to print a vertical

line ‘|’ followed by the centered string passed in R1 (using PRINT_CENTERED in MP1). All registers
for the subroutine are caller-saved.

While coding, he made a mistake. Fortunately, he wrote a test that exposed the bug. When he runs the
test in lc3sim, he finds that the first call (at line 5) succeeds, printing “| AAAAA ”, but the second
call (at line 9) fails, printing “ BBBBB ” without the vertical line.

Assume that PRINT_CENTERED is correct, and that all registers except for R7 are callee-saved for
PRINT_CENTERED.

A. (4 points) Using NO MORE THAN 15 WORDS, explain why the second call fails.

__Executes data at line 19.__

B. (4 points) Make one change to the code between lines 12 and line 36 (add a line, delete a line, or
move a line/label) to fix the subroutine. You may not modify any code before line 12.
NO CREDIT will be given for more than one change.

1 .ORIG x3000
2
3 LEA R1, STR_1
4
5 JSR PRINT_WITH_VL ; SUCCESS
6
7 LEA R1, STR_2
8
9 JSR PRINT_WITH_VL ; FAIL
10
11 HALT
12
13 STR_1 .STRINGZ "AAAAA"
14
15 STR_2 .STRINGZ "BBBBB"
16
17 PRINT_WITH_VL
18
19 SAVE_R7 .FILL 0 ; part B: move this line outside of subroutine
20 ; (ex: to 16 or 32 or 34)
21 ST R7, SAVE_R7
22
23 LD R0, VLINE
24
25 OUT
26
27 JSR PRINT_CENTERED ; more detail: in first execution of
28 ; PRINT_WITH_VL, .FILL 0 (no-op) is executed
29 LD R7, SAVE_R7 ; then written with x3002 (ST R0,#2); in
30 ; second execution, the ST instruction
31 RET ; writes x007C (no-op) over OUT, eliminating
32 ; the vertical line. Students need not
33 VLINE .FILL x7C ; provide this detail, of course.
34
35 .END
36

Page 3

Problem 1, continued:

2. (10 points) The door of D-331 is always closed, which makes you very angry. You decide to add an AI

quantum magic button to control the door with a piece of LC-3 code. When the button is pressed, it
sends a message to a memory-mapped IO register (called AQMR) at address 0xFFD0 with the format
shown here:

 15 14 12 11 0
 ← AQMR

 status reserved magic number

 When the button is pressed, the “status” bit of AQMR becomes 1. Otherwise, the “Status” bit is 0.
 If and only if an ECE220 student presses the button, a 12-bit message 0x220 appears in the “magic

number” part of AQMR. The “magic number” is something other than 0x220 (the exact bits are
unspecified) when no ECE220 student is pressing the button.

 The “reserved” part of AQMR should not be used—do not assume 0s nor 1s in these bits.

Using NO MORE LINES THAN PROVIDED BELOW (you may leave some blank), complete the
LC-3 code to control the door. The code should send a signal to unlock the door by writing x0220 to
0xFFD2 whenever an ECE220 student presses the button. You may use any registers.

.ORIG x3000
; An infinite loop to check AQMR and unlock the door if needed
INFINITE_LOOP LDI R1, AQMR

BRzp INFINITE_LOOP

 LD R2,MASK ; examine only the "magic number"

 AND R1,R1,R2

 LD R2,NEG_VAL ; load negated x0220 into R2

 ADD R2,R2,R1

 BRnp INFINITE_LOOP ; not the magic number!

STI R1,ADQR ; R1 must hold x0220

BRnzp INFINITE_LOOP
; LC-3 should never reach here
HALT
AQMR .FILL xFFD0

MASK .FILL x0FFF ; magic number bits only

NEG_VAL .FILL xFDE0 ; x0220, negated

AQDR .FILL xFFD2

.END

Page 4

Problem 1, continued:

3. (4 points) As part of an ECE408 MP, the TAs were asked to implement

ceildiv (A,B) = ⌈A/B⌉ ,

where A and B are positive integers and the ceiling function, ⌈X⌉, computes the smallest integer ≥ X.
Note that the definition above is in math, not in C code. Sadly, the TAs need help. Please fill in the
blank to complete the function. No control constructs nor function calls are allowed, and answers that do
not fit in the blank will not be considered for credit.

uint32_t ceildiv (uint32_t A, uint32_t B)
{
 return (A + B – 1) / B ;
}

There are many valid answers to this question. Technically, a conditional operator is likely to produce
assembly more like an if statement (a control construct), but we accepted those answers as well since
the conditional operator was introduced as an operator.

Page 5

Problem 2 (22 points): Understanding LC-3 Code

The LC-3 subroutine MYSTERY appears below. The subroutine requires that R1 > 1 when it is called.
Read the code, then answer the questions below.

MYSTERY AND R5,R5,#0
 ADD R2,R1,#-1
OUTER_LOOP ADD R4,R2,#-1
 BRz LABEL1
 ADD R3,R1,#0
INNER_LOOP ADD R4,R2,#0
 NOT R4,R4
 ADD R4,R4,#1
 ADD R3,R3,R4
 BRp INNER_LOOP
 BRz LABEL2
 ADD R2,R2,#-1
 BRnzp OUTER_LOOP
LABEL1 ADD R5,R5,#1
LABEL2 RET

1. Assuming that R1=x0003, R2 contains bits, and R3=x0042 at the start of the MYSTERY subroutine,

fill in the blanks below with final register values after the RET instruction executes. For any register for
which you cannot know the value, write “bits.”

 R2: ______1________ R3: ______-1_______ R5: ______1________

2. Assuming that R1=x0004, R2=x0000, and R3 contains bits at the start of the MYSTERY subroutine,

fill in the blanks below with final register values after the RET instruction executes. For any register for
which you cannot know the value, write “bits.”

 R2: ______2________ R3: ______0________ R5: ______0________

3. Assuming that R1=x0005, R2=xFFFF, and R3=x0110 at the start of the MYSTERY subroutine, fill

in the blanks below with final register values after the RET instruction executes. For any register for
which you cannot know the value, write “bits.”

 R2: ______1________ R3: ______-1_______ R5: ______1________

4. *** Using NO MORE THAN 30 WORDS, explain what MYSTERY does.

Checks whether R1 is prime, returning R5=1 if yes and R5=0 if no.
[Also returns largest factor of R1 (other than R1 itself) in R2. We didn’t plan that fact,
and didn’t require students to say it, but several did.]

Page 6

Problem 3 (24 points): Computing the Maximum Value on a Stack

Professor Lumetta needs your help! He knows that you implemented FACTORIAL during lecture (as a
think-pair-share), which multiplied a stack of integers. Now, he needs you to write a subroutine to compute
the maximum value among non-negative integers on a stack. The following subroutine is provided to you:

; MAX - compare two non-negative integers and return the larger one
; Input: R1 – first non-negative integer
; R2 – second non-negative integer
; Output: R0 – the larger one among R1 and R2
MAX NOT R0,R1 ; store -R1 into R0
 ADD R0,R0,#1
 ADD R0,R0,R2 ; now R0 = R2 - R1
 BRp RETR2 ; if R2 - R1 > 0, goto RETR2
 ADD R0,R1,#0 ; return R1
 RET
RETR2 ADD R0,R2,#0 ; return R2
 RET

1. (10 points) First, write a subroutine called STACK_MAX that pops two integers from the stack,
compares them using MAX, and pushes the larger one back onto the stack.
 You must complete the pop operations before calling MAX.
 The stack follows the same conventions used in lecture and the slides.
 You may assume that there are at least two non-negative integers on top of the stack.

; STACK_MAX - pop two non-negative integers from the stack
; and push back the larger one
; Input: R6 – top of the stack
; Output: R6 – top of the stack after operation
; Registers: All registers are caller-saved.

Use NO MORE THAN 15 MEMORY LOCATIONS, including storage for any data needed.
** Using more than 15 LOCATIONS will earn NO CREDIT. **

(Include comments for more partial credit.)

STACK_MAX ST R7,SM_R7 ; save R7

 LDR R1,R6,#0 ; read first value into R1

 LDR R2,R6,#1 ; read second value into R2

 ADD R6,R6,#2 ; remove both values from stack

 JSR MAX ; find maximum of R1 and R2 in R0

 ADD R6,R6,#-1 ; push R0 onto stack

 STR R0,R6,#0

 LD R7,SM_R7 ; restore R7

 RET

SM_R7 .BLKW #1

Page 7

Problem 3, continued:

2. (14 points) Now it’s time to actually solve the problem! Write a subroutine called COMPUTE_MAX

that processes the integers on the stack using the STACK_MAX subroutine that you wrote in part (1)
and leaves the maximum integer as the only element on the stack.

; COMPUTE_MAX – process a stack of non-negative integers,
; leaving only the maximum value on the stack
; Input: R6 – top of the stack
; R5 – base of the stack
; Output: R6 - top of the stack (original base minus 1),
; which points to the maximal integer
; All registers are caller-saved.

Use NO MORE THAN 20 MEMORY LOCATIONS, including storage for any data needed.

** Using more memory than 20 LOCATIONS will earn NO CREDIT. **
(Include comments for more partial credit.)

COMPUTE_MAX ST R7,CM_R7 ; save R7

 NOT R5,R5 ; compute –(R5 – 1) = (-R5) + 1

 ADD R5,R5,#2

LOOP ADD R3,R6,R5 ; stack has one value? If so, all done.

 BRz DONE

 JSR STACK_MAX ; combine two values into one on stack

 BRnzp LOOP ; keep going until we have one value left

DONE LD R7,CM_R7 ; restore R7

 RET

CM_R7 .BLKW #1

Page 8

Problem 4 (17 points): Basics of C Programming

1. Read the C program below, then answer the questions.

#include <stdint.h>
#include <stdio.h>

void func (int32_t p) {
 static int32_t x = 0;
 static int32_t y = 5;
 while (++x + y < p) {
 y += (x << 1);
 printf ("%d %d ", x, y);
 }
}

int main () {
 int x = 30;
 func (x);
 // func (x + 10); // <-- this call added for part (B)
 return 0;
}

A. (6 points) Write the function’s output on the line below.

__1 7 2 11 3 17 4 25__

B. (3 points) If a second call to func is added (shown in the comment), what is the output from the
second call to func? Write it on the line below.

__6 37___

2. (8 points) Read the C program below, then write the program’s output on the blank line below the code.

#include <stdint.h>
#include <stdio.h>

int main() {
 int32_t i = 0, j = 0;
 do {
 switch (i % 2) {
 case 0:
 j++;
 printf ("%d", j);
 case 1:
 printf ("%d", i);
 i++;
 break;
 default:
 printf("x");
 break;
 }
 } while (i++ + j < 6);
 return 0;
}

Output: __102234___

Page 9

Problem 5 (14 points): Understanding Compiled C Code

The LC-3 code below corresponds to the output of a non-optimizing compiler for the C function funny.

FUNNY ; (students need not write explanatory comments)
ADD R6, R6, #-5 ; space for linkage + 2 local variables
STR R5, R6, #2
ADD R5, R6, #1
STR R7, R5, #2 ; stack frame setup complete
AND R0, R0, #0 ; initialize one local variable (say B) to 0
STR R0, R5, #-1

LOOP
LDR R0, R5, #4 ; load X into R0
BRnz DONE ; if X <= 0, we’re "DONE"
LDR R0, R5, #5 ; add Y to B
LDR R1, R5, #-1
ADD R1, R1, R0
STR R1, R5, #-1 ; store sum back to B
LDR R0, R5, #4 ; decrement X
ADD R0, R0, #-1
STR R0, R5, #4
BRnzp LOOP ; branch back to loop test

DONE
LDR R0, R5, #-1 ; return B (copy B to return value location)
STR R0, R5, #3
LDR R7, R5, #2 ; stack frame teardown starts here
LDR R5, R5, #1
ADD R6, R6, #4
RET

Write C code below for the function funny from which a non-optimizing compiler might have produced
the LC-3 code above. For parameters, choose names from X, Y, and Z. For local variables, choose names
from A, B, and C. (There are no more than three of either type.) All types are int (16-bit 2’s complement).

int funny (int X, int Y)
{
 int A, B = 0;

 while (X > 0) {
 B += Y;
 X--;
 }
 return B;
}

// Note that the code changes both B and X, so this function is not
// the compiler implementing multiply (return X * Y when X >= 0),
// but rather part of the C code, as shown.

