
ZJU-UIUC Institute
Second Midterm Exam, ECE 220

Thursday 3 December 2020

 Be sure that your exam booklet has 12 pages.

 Write your name, student ID, and lab section TA name on the first page.

 Do not tear the exam apart other than to remove the reference sheet.

 This is a closed book exam. You may not use a calculator.

 You are allowed TWO handwritten A4 sheets of notes (both sides).

 YOU MAY NOT USE EXTRA PAPER! WRITE ON THE EXAM!

 Absolutely no interaction between students is allowed.

 Show all work, and clearly indicate any assumptions that you make.

 Challenge problems are marked with ***.

 Don’t panic, and good luck!

Problem 1 19 points _______________________________

Problem 2 25 points _______________________________

Problem 3 25 points _______________________________

Problem 4 30 points _______________________________

Correct Room 1 point _______________________________

Total 100 points _______________________________

Name (pinyin and Hanzi):
SOLUTION IS IN RED

Student ID: Lab TA Name:

2

Problem 1 (19 points): Short Answer Questions

Tingkai is working on a filesystem for his operating system in ECE391. His plan is to organize the
filesystem as a set of data blocks, each containing 4 kB (4,096 bytes), using the following structure:

struct data_block_t {
 uint8_t bytes[0x1000];
};

1. (3 points) After struggling for a while, Tingkai found a function that returns a pointer to the first block

of the file system:
struct data_block_t* fblock = get_fs_pointer ();

Tingkai then wrote following variable declaration below to copy a block from the filesystem:

struct data_block_t blk = *(fblock + 4*N + 2);

His code doesn’t look elegant. Please help him by rewriting the declaration using array notation
(N is a variable).

struct data_block_t blk = __fblock[4 * N + 2]_____________________________ ;

Now consider an array of data blocks:

struct data_block_t my_blocks[4];

Assuming a machine with byte-addressable memory (one
memory address in memory holds one byte), the array
appears as shown to the right.

2. (3 points) What is the value of

my_blocks[2].bytes[1]?

Write “bits” if the value cannot be determined.

_________________0xBC___________________

3. (3 points) Given the declaration:

struct data_block_t* foo = my_blocks + 3;

and assuming that my_blocks has value 0xECE220, what is the value stored in foo (in hexadecimal)?
Show your work for partial credit.

___0xECE220 + 0x1000 * 3 = 0xED1220_________

my_blocks[0]  0x12
 0x34
 …

my_blocks[1]  0x56
 0x78
 …

my_blocks[2]  0x9A
 0xBC
 …

my_blocks[3]  0xEE
 0xFF
 …

3

Problem 1, continued:

4. (4 points) In ECE220, Bob learned that a one-dimensional array can be passed as a pointer to a function.

He wanted to extend this idea to two-dimensional arrays and wrote the following code:

void foo (char** arr) {
 // Some code
}

int main () {
 char a[10][20];
 foo (a);
 return 0;
}

Is this code correct? USING 30 WORDS OR FEWER, explain.

__No. a is a pointer to an array of arrays of 20 characters (contiguous in memory), not a ________

__pointer to a pointer___

5. (6 points) Bob also struggled with the idea of dynamic allocation. On a recent midterm, he was asked to
write a function to free a linked list of thing_ts, given a pointer to a variable holding a pointer to the
head of the list. The function should also set the original list head variable to NULL.

Bob wrote the code shown below. Unfortunately, it contains TWO BUGS.
USING 20 WORDS OR FEWER (per bug), explain each bug and how to fix the problem.

Bug 1: ___uses thing->next in loop update after freeing it in loop body; add a temporary

 __variable

Bug 2: ___writes NULL to head_ptr parameter instead of *head_ptr; add an asterisk

typedef struct thing_t thing_t;
struct thing_t {
 // Other fields don’t matter.
 thing_t* next;
};

void free_list (thing_t** head_ptr)
{
 for (thing_t* thing = *head_ptr; NULL != thing; thing = thing->next) {
 free (thing);
 }
 head_ptr = NULL;
}

4

Problem 2 (25 points): Arrays and Debugging with Deep Neural Networks

1. (15 points) In this problem, you must implement a convolution, an important tool for image processing

and deep neural networks (DNNs). Given a size × size input matrix in and a 3×3 mask matrix mask,
your function must calculate a size × size matrix out, as described below.

In a convolution, each output element is calculated by first aligning the center of the mask matrix over
the corresponding input element (the element with the same row and column indices as the output
element being calculated), as illustrated by the shaded region of the input in the example below for
(row,col)=(0,0). Notice that part of the mask may fall outside of the input for some output elements
(including the example shown), and that elements outside the actual input matrix are treated as 0. After
alignment, each element of the mask is multiplied by the corresponding input element (or 0), and all nine
products are summed to produce the single output element.

0 0 0

0 1 1 1 1 1 2 5 5 4
0 1 2 1 * -2 1 1 = 8 9 2
 1 1 1 2 1 1 7 5 2

 in mask out

Specifically, in the figure above, all three matrices—in, mask, and out—are 3×3. To calculate the
(0,0) element of the output matrix out (the shaded element), we align the center of the mask over the
(0,0) element of the input matrix in—the shaded region shows the position of the mask matrix.
Elements of the shaded region that fall outside of the input matrix use the value 0 instead of input matrix
values, as shown in the figure. To compute the output value, we multiply each of the values from the
mask by the corresponding element of the input (or 0), then sum up the nine products. In this case,
starting from the upper left, we obtain 0×1 + 0×1 + 0×2 = 0 from the first row, 0×(-2) + 1×1 + 1×1 = 2
from the second row, and 0×2 + 1×1 + 2×1 = 3 from the third row, for a total of 5, which we write into
out at position (0,0).

The problem is on the next page.

5

Problem 2, continued:

0 0 0

0 1 1 1 1 1 2 5 5 4
0 1 2 1 * -2 1 1 = 8 9 2
 1 1 1 2 1 1 7 5 2

 in mask out

 (Image replicated for your convenience.)

USING AT MOST SIX LINES (not counting braces and variable declarations), which must fit within
the blanks provided, complete the inner loop body below to handle one product term of each output
element. Include comments for more partial credit.

Each of the three matrices—in, mask, and out—is given as a one-dimensional array. Calculate array
indices in the same manner as discussed in class and used in your MPs.

You may ignore the possibility of overflow in your calculations.

void conv_layer (int32_t* in, int32_t* mask, int32_t* out, int32_t size)
{
 int32_t x, y, p, q;

 // For each value in the input matrix
 for (y = 0; y < size; y++) {
 for (x = 0; x < size; x++) {

 // Initialize out to 0
 out[y * size + x] = 0;

 // For each value in the mask matrix
 for (p = 0; p < 3; p++) {
 for (q = 0; q < 3; q++) {

 if (0 <= y + p – 1 && size > y + p – 1 &&

 0 <= x + q – 1 && size > x + q – 1) {

 out[y * size + x] += mask[p * 3 + q] *

 in[(y + p – 1) * size + (x + q – 1)];

 }

 }
 }
 }
 }
}

6

Problem 2, continued:

2. (10 points) Pooling is a second important operation in DNNs. In max pooling, a square submatrix of

values is replaced with a single value—the maximum among the values in the square submatrix. The
picture below, for example, shows 2×2 max pooling applied to a 5×5 input matrix.

29 35 26 167 55
0 100 45 22 33

14 14 7 34 21 --> 100 167

14 14 22 56 22 14 56

16 -6 2 155 23
 in out

 Your friend has implemented 2×2 max pooling in the subroutine below. Given a size × size input

matrix in, the subroutine produces an appropriately sized output matrix out (if size is odd, the code
should ignore the last row and column).

Unfortunately, your friend’s subroutine HAS TWO BUGS. For each bug, give one example of an
input matrix in (for example: in = {1, 2, 3, 4})that exposes the bug. Then, USING TWENTY
WORDS OR FEWER, explain the bug.

Bug 1: in = { 1 ________ _____ }

Reason 1: Rounds out_size up instead of down, producing 1 rather than 0 when size is 1.

Bug 2: in = { -1, -1, -1, -1 _____ }

Reason 2: Initializes val_max to 0 instead of minimum int32_t value, so calculated max

 is wrong.

void maxpooling_layer(int32_t *in, int32_t *out, int32_t size) {
 int32_t out_size = (size + 1) / 2;
 int32_t x, y, p, q;
 int32_t val_max, val_cmp;

 // For each value in the output matrix
 for (x = 0; x < out_size; x++) {
 for (y = 0; y < out_size; y++) {
 val_max = 0;

 for (p = 0; p < 2; p++) {
 for (q = 0; q < 2; q++) {
 // value to be compared
 val_cmp = in[(2 * y + p) * size + (2 * x + q)];
 val_max = (val_max > val_cmp ? val_max : val_cmp);
 }
 }
 out[y * out_size + x] = val_max;
 }
 }
}

7

Problem 3 (25 points): Functions and Dynamic Resizing

Recall the AI quantum magic button that you implemented during Midterm 1 for D-331. To further improve
security, you decide to allocate a unique ID (a uint32_t) for each student, and to store these IDs in a
dynamically resized array.

The ID list is stored in a dynamically resized array using the following file-scope variables.

uint32_t* id_list; // pointer to the dynamically allocated ID array
uint32_t num_ids; // current number of elements stored in ID array
uint32_t max_ids; // current ID array size

Complete each function below by filling in the blanks as necessary. Not all blanks may be needed. You
may USE ONLY THE BLANKS PROVIDED. Additional code will earn no credit.

1. (6 points) Complete the function below to check whether the ID given by parameter id is already
present in the array of IDs. Return 1 if it is present, or 0 if it is not present.

int32_t is_duplicate (uint32_t id) {

uint32_t i;

for (i = 0; num_ids > i; i++) {

 if (id == id_list[i]) {

 return 1;

 }

}

return 0;

__

}

2. (4 points) Complete the function below to add the ID given by parameter id to the end of the array of
IDs. You may assume that the array has been allocated and contains enough space for the new ID.
Update file-scope variables as necessary.

void insert_id (uint32_t id) {

id_list[num_ids++] = id;

__

}

8

Problem 3, continued:

uint32_t* id_list; // pointer to the dynamically allocated ID array
uint32_t num_ids; // current number of elements stored in ID array
uint32_t max_ids; // current ID array size

 (List of file-scope variables replicated for your convenience.)

3. (15 points) Finally, complete the function below to insert the ID given by the parameter id to the end of
the array of IDs. The function should return 1 for success, and 0 for failure.

 Duplicate IDs should be rejected (by returning failure).
 You may assume that the array ID pointer is valid when your function is called

(it will not be NULL).
 If the array does not have enough space for a new ID, grow the array by a factor of 3, updating

file-scope variables as necessary. Return failure if no memory is available.
 See the reference sheet for dynamic allocation functions available in the C standard library.

Your code MUST USE the helper functions that you developed for Part 1 and Part 2.

int32_t register_id (uint32_t id) {

__

__

// Check for duplicate IDs.

if (is_duplicate (id)) {

 return 0;

}

 // Resize the array if necessary.

 if (max_ids == num_ids) {

 uint32_t* copy = realloc (id_list, 3 * max_ids * sizeof (*id_list));

 if (NULL == copy) {

 return 0;

 }

 id_list = copy;

 max_ids *= 3;

 __
}

// Insert the ID.

insert_id (id);

 return 1;
}

9

Problem 4 (30 points): Merge Sort on Linked Lists

In this problem, you must implement a recursive merge sort on a linked list of values. Merge sort works as
follows:

 Divide the original data into two unsorted parts (of roughly equal size).
 Sort both parts (recursively).
 Merge the two sorted parts into a sorted whole.

Note that any list consisting of a single element is already sorted, and forms a stopping condition for the
recursion.

For each part of this problem, complete each function below by filling in the blanks as necessary. Not all
blanks may be needed. You may USE ONLY THE BLANKS PROVIDED. Additional code will earn no
credit.

As a further aid to understanding, the diagram below illustrates the merge sort process for an array.

Your recursive merge sort will operate on a linked list of the structure shown below, each of which has an
integral value and a next pointer.

typedef struct element_t element_t;
struct element_t {
 int32_t value;
 element_t* next;
};

10

Problem 4, continued:

typedef struct element_t element_t;
struct element_t {
 int32_t value;
 element_t* next;
};

(Structure definition replicated for your convenience.)

Before implementing the main recursive merge sort function, you must implement two helper functions.

1. ***(12 points) Complete the function below to divide the list starting with head into two sublists. The

sublists should have equal length if the original list has even length. If the original list has odd length,
the extra element should be put into the first sublist. A pointer to the head of the first sublist should be
written to the address given by firstp, and a pointer to the head of the second sublist should be written
to the address given by secondp.

Not all blanks may be needed. You may USE ONLY THE BLANKS PROVIDED. Additional code
will earn no credit.

For this function, the list given by head must not be empty.

For full credit, do not write any additional loops (other than the one given).

void divide_list (element_t* head, element_t** firstp, element_t** secondp)
{
 element_t* middle = head;
 element_t* end = head->next;
 element_t* sublist;

 while (end != NULL) {

 end = end->next;

 if (NULL == end) {

 break;

 }

 end = end->next;

 middle = middle->next;
 }

 sublist = middle->next;
 middle->next = NULL; // middle node ends one sublist

 *firstp = head;

 *secondp = sublist;
}

11

Problem 4, continued:

typedef struct element_t element_t;
struct element_t {
 int32_t value;
 element_t* next;
};

 (Structure definition replicated for your convenience.)
Not all blanks may be needed. You may USE ONLY THE BLANKS PROVIDED. Additional code
will earn no credit.

2. (8 points) Complete the recursive function below to merge two sorted lists, fst and sec, into a single

sorted list and return a pointer to the merged list. All lists are sorted in increasing order of their value
fields.

element_t* merge_list (element_t* fst, element_t* sec)
{
 element_t* result;

 if (fst == NULL)

 return sec;
 if (sec == NULL)

 return fst;

 if (fst->value < sec->value) {

 result = fst;

 result->next = merge_list (fst->next, sec);
 } else {

 result = sec;

 result->next = merge_list (fst, sec->next);
 }
 return result;
}

3. (10 points) Now you are ready to write merge sort. Complete the recursive function below to sort the

list head, which may be empty, using merge sort, and return a pointer to the sorted list. Your code
MUST USE the helper functions that you wrote in Part 1 and Part 2.

element_t* merge_sort (element_t* head)
{
 element_t* fst;
 element_t* sec;

 if (NULL == head || NULL == head->next) {
 return head;
 }
 divide_list (head, &fst, &sec);

 fst = merge_sort (fst);

 sec = merge_sort (sec);

 return merge_list (fst, sec);
}

12

dynamic allocation routines from C’s standard I/O library

// returns pointer to new memory, or NULL on failure
void* malloc (size_t size);

// returns pointer to 0-filled new memory, or NULL on failure
void* calloc (size_t nmemb, size_t size);

// returns pointer to resized block, or NULL on failure
void* realloc (void* ptr, size_t size);

// frees previously allocated block
void free (void* ptr);

