
ECE 220: Computer Systems and Programming

Spring 2021 – Final Exam

May 10, 2021

1. This is a closed-book, closed-notes exam
2. Absolutely no interaction between students is allowed
3. Illegible handwriting will be graded as incorrect
4. You must put your name and NetID on your submission page
5. Use a separate page for each question
6. Submission is only accepted through Gradescope
7. Your CBTF time stamp is checked against your Gradescope

submission time stamp. Any unusual activity will be reported to
the college for infraction of academic integrity.

 Question 1 (24 points): _________________

 Question 2 (30 points): A)______; B)______; C)______

 Question 3 (16 points): _________________

 Question 4 (12 points): _________________

Question 5 (18 points): A)______; B)______; C)______; D)______

 Total Score: _________________

Write down your answers in the following format. Each question should be on a
separate page. Tag each question on your Gradescope submission.

Name: NetID:

Q1 (write down the # and entire line of code highlighted in yellow)

Q2 (write down the # and entire line of code highlighted in yellow)
Part A; Part B; Part C

Q3 (write down the # and entire line of code highlighted in yellow)

Q4 (write down the # and entire line of code highlighted in yellow)

Q5
Part A; Part B; Part C; Part D

2

Problem 1 (24 points): Linked List

Given the head of a linked list, and an integer k. Write a C function that removes the
kth node (the list is 1-indexed) from the head and insert the removed node as the
(2k)-th node of the linked list. Assume k > 1 and the length of the linked list is larger
than k. If the length of the linked list is smaller than 2k, please insert the removed
node to the end of the linked list.

Example

Input:

[6,5,4,3,2,1], k=2

Output:
[6,4,3,5,2,1]

5 4 3
3

2 1

4 3
3

5
5

2 1

6

6

3

#include <stddef.h>

#include <stdlib.h>

#include <stdio.h>

typedef struct ListNode node;

struct ListNode {

 int data;

 struct ListNode *next;

};

void KthNode(node* head, int k){

node *cur = head;

int i;

 /* traverse the list to find the (k-1)-th node */

 for(i=1; i < k - 1; i++){

 (1)_________________;

}

 /* save the pointer that points to the (k)-th node */

 node *k_ptr = (2)__________________;

 /* update pointer to “remove” the (k)-th node */

 cur->next = (3)__________________;

/* continue to traverse the list to find the right place for

 inserting the (k)-th node */

 i = 0;

 while(cur->next != NULL){

 cur = (4)__________________;

 i = (5)___________;

 if(i == k)

 (6)___________;

}

 /* insert the (k)-th node after ‘cur’ node */

 node *tmp = cur->next;

 cur->next = (7)__________________;

 k_ptr->next = (8)__________________;

}

4

Problem 2 (30 points): Binary Tree

This problem has Parts A, B, and C.

Part A: Given a binary tree, write a recursive C function to find its largest node and
return a pointer to it. Please note that the tree does not have duplicate nodes.

Example:

For the given binary tree, the function should return a
pointer to the node contains the data ‘11’.

Part B: Write a C function to insert a new node as the
left child of the largest node (found in Part A). If there already exists a left child, insert
the new node as the right child. If the left and right child already exists, insert the new
node as a left child anyway. Move the existing left subtree of the largest node to be
the left child of the new node that is inserted.

Examples:

In all the examples below, the maximum value found from part A is 11 and the new
node to insert is 8.

1. Initial Tree:

After Insertion:

5

2. Initial Tree:

After Insertion:

3. Initial Tree:

After Insertion:

For Part A and Part B, fill in the blanks below.

/* tree node */

struct Node {

 int data;

 struct Node *left, *right;

};

6

/* Part A: find the maximum node */

struct Node* findMax(struct Node* root){

 /* Base case */

 if ((1))

 return NULL;

 int lres=0;

 int rres=0;

/* Return maximum of 3 values: 1) Root's data, 2) Max

in Left Subtree, 3) Max in right subtree */

 int res = root->data;

/* Recursion for the left subtree */

 struct Node* left_max = (2) ;

 if (left_max!=NULL)

 lres=left_max->data;

/* Recursion for the right subtree */

 struct Node* right_max = (3) ;

 if (right_max!=NULL)

 rres=right_max->data;

/* Compare lres, rres and res then return the ptr to

 the max node */

/* if left subtree max node’s data is greater than

 that of right subtree’s max and root */

 if ((4)){

 return left_max;

 }

 /* if right subtree max node’s data greater than that

 of root */

 if ((5)){

 return right_max;

 }

 return root;

}

7

/* Part B: Inserts a new node */

/* Assume helper function ‘struct Node* newnode(int val);’ is

given and can be used to dynamically allocate a new node, set its

data to val, and left and right pointers to NULL */

void insertNode(struct Node* max_node, int val){

 if ((6)){

 printf("Cannot Insert New Node!");

 return;

 }

 /* Case 1: max_node doesn’t have a left child */

 if ((7)){

 (8) ;

 printf("Node inserted as left child.\n");

 return;

 }

/* Case 2: max_node has a left child but no right child */

 if ((9)){

 (10) ;

 printf("Node inserted as right child.\n");

 return;

 }

 /* Case 3: max_node has both left and right children */

 struct Node* temp = max_node->left;

max_node->left = (11) ;

(12) ;

printf("Node inserted as left child. Inserted node now has a

left subtree.\n");

}

/* Main Function */

int main(){

 /* creation of the tree is omitted*/

/* Function call for part A. Assume root to be the root of

the binary tree */

struct Node* max_node=findMax(root);

 if (root!=NULL)

 printf("Maximum node is %d \n", max_node->data);

/* Function call for part B. Assume 8 is to be inserted */

 insertNode(max_node, 8);

 return 0;

}

8

Part C: Suppose the binary tree after insertion looks like this:

What sequence would an in-order traversal (left, root, right) produce?

Your Answer: __

9

Problem 3 (16 points): C to LC-3 Conversion

In the following, alternateList(struct Node* head) represents a C function that prints

alternate nodes of the given Linked List, first from head to tail, and then from tail to head.

If Linked List has an even number of nodes, then alternateList() skips the last node.

Examples:

If given a linked list: 1->2->3->4->5, it prints 1 3 5 5 3 1.

If given a linked list: 1->2->3->4->5->6, it prints 1 3 5 5 3 1.

Replicate the given C function alternateList(struct Node* head) using LC3. Code snippet

is provided. You just need to fill in the blanks.

_______________________ C Code __________________________

/* A Linked List Node */

struct Node{

 int data;

 struct Node *next;

};

/* Recursive function – this function has no local variables */

void alternateList(struct Node* head){

 if(head == NULL)

 return;

 printf("%d ", head->data);

 if(head->next != NULL)

 alternateList(head->next->next);

 printf("%d ", head->data);

}

Recall that a function’s activation record has the following format:

Local Variables

Caller’s Frame Pointer

Return Address

Return Value

Arguments

10

You MUST use and conform to the LC-3 calling conventions we have described in class. You

may assume each data type will only occupy one memory location in LC-3.

; R6 is the stack pointer. R5 is the frame pointer.

; R7 contains the return address.

ALTERNATE_LIST

; complete callee set-up (push bookkeeping information and

; local variables) and comment on each line

(1)____________________;reserve spaces (update stack pointer)

(2)____________________;store return address

(3)____________________;store caller’s frame pointer

(4)____________________;update frame pointer

; Load head to R0

(5)____________________

; Check if head is NULL

(6)____________________

(7)BR_ FINISH

; printing omitted

; Check if head->next is NULL

(8)____________________ ; load head->next to R2

(9)BR__ PRINT

RECURSIVE

(10)____________________ ; load head->next->next to R4

; complete caller set-up (push arguments)

(11)____________________;store argument to run-time stack

(12)____________________;update stack pointer

; make recursive call

(13)____________________

; caller tear-down omitted

PRINT

; printing omitted

FINISH

; callee teardown

(14)____________________;restore caller’s frame pointer

(15)____________________;restore return address

(16)____________________;update stack pointer

RET

11

Problem 4 (12 points): C++

The following simple C++ program declares a class, creates some objects, prints them,
and performs a “+” operation. Fill out the blanks in main.cpp for the program to match
the provided output.

The expected output should look like the following:

This house has 5 rooms.
This house has 10 rooms.
This house has 15 rooms.

main.cpp

#include<iostream>

using namespace std;

class house {

int roomCount;

 public :

 house(){}

 house(int r){

}

int getRoomCount(void){

}

void setRoomCount(int newRoomCount){

}

 void houseInfo() {

 cout << "This house has "<<roomCount<< " rooms."<<endl;

}

 house operator + (const house & other){

}

};

12

int main() {

 house a(5);

 house b(10);

 a.houseInfo();

 b.houseInfo();

 house c = a+b;

 c.houseInfo();

 return 0;

}

13

Problem 5 (18 points): Concepts

Part A
Consider the following code:

char *name;

name = (char *)malloc(32*sizeof(char));

realloc(name, 16*sizeof(char));

free(name);

Assume memory allocations are successful and each char is 8-bit long, how many
bytes of memory is deallocated when we call free?

Your Answer:______________________________ bytes

Part B
What would cause a memory leak?

(a) Run out of space in the run-time stack

(b) Run out of space in the heap

(c) Lost a pointer to a block of dynamically allocated memory

(d) Access memory location that is not allowed

Your Answer: A B C D

Part C
Determine whether the following statement is true or false:

A stack can be implemented by using an array or a linked list.

Your Answer: True False

Part D
Determine whether the following statement is true or false:

In C++, a virtual function table in each class stores its virtual functions.

Your Answer: True False

14

15

End of ECE 220 Final Exam

