
ECE	220:	Computer	Systems	and	Programming	
	

Spring	2021	–	Midterm	Exam	2	
	

April	8,	2021	
	
1. This	is	a	closed-book,	closed-notes	exam	
2. Absolutely	no	interaction	between	students	is	allowed	
3. Illegible	handwriting	will	be	graded	as	incorrect	
4. You	must	put	your	name	and	NetID	on	your	submission	page	
5. Use	a	separate	page	for	each	question	
6. Submission	is	only	accepted	through	Gradescope	

	
									 	 Question	1	(36	points):	_________________	

									 	 Question	2	(30	points):	_________________									 	 	

	 	 Question	3	(20	points):	A)_______;	B)_______	

									 	 Question	4	(14	points):	1)_______;	2)_______	

																	 								Total	Score:	_________________	
	

Write	down	your	answers	in	the	following	format.	Each	question	should	be	on	
a	separate	page.	Tag	each	question	on	your	Gradescope	submission.	
	
Name:	
NetID:		
	
Q1	(write	down	the	#	and	entire	line	of	code	highlighted	in	yellow)	
	
	
Q2	(write	down	the	#	and	entire	line	of	code	highlighted	in	yellow)	
	
Q3	(write	down	the	#	and	entire	line	of	code	highlighted	in	yellow)	
A)	
B)		
	
Q4	
1)	
2)	
	 	

	
	
	
	

2	

Problem	1	(36	points):	Array	
	
Given	an	m	x	n	2D	matrix,	validate	if	the	sum	of	the	left	diagonal	is	larger	than	the	
sum	of	the	right	diagonal	in	every	2	x	2	submatrices.	Return	True	if	the	given	matrix	
satisfies	this	statement.	Otherwise,	return	False.	
	
Example	Input:	a	5	x	4	matrix	(m	=	5,	n	=	4)	
	

4 1 2 0

3 5 4 9

5 1 4 11

9 6 9 8

1 12 3 6

Output:	False	
	
Explanation:		
1st	submatrix:	4+5(left	diagonal	sum)	>	1+3(right	diagonal	sum)	
2nd	submatrix:	2+9	>	0+4	
3rd	submatrix:	5+6	>	1+9	
4th	submatrix:	4+8	<	11+9		
The	fifth	row	that	cannot	form	a	2x2	submatrix,	therefore	it	is	ignored	
	
Note:		

• Implement	a	helper	function	that	converts	2D	index	to	1D	index	assuming	
that	the	2D	matrix	is	stored	in	row-major	order.	

• Extra	row	or	column	that	cannot	form	a	2x2	submatrix	should	be	ignored.	
	
	
Algorithm	for	checkSubMatrix()	function:	

• Start	with	the	upper	left	cell	in	each	2x2	submatrix	
• Calculate	the	upper	bounds	for	row	and	column	index	within	each	2x2	

submatrix	
• If	the	bounds	are	within	range,	calculate	left	diagonal	sum	and	right	diagonal	

sum	
• Return	false	if	left	diagonal	sum	is	less	than	or	equal	to	right	diagonal	sum	
• Return	true	if	left	diagonal	sum	is	greater	than	right	diagonal	sum	for	every	

2x2	submatrix	

	
	
	
	

3	

/* FILL IN THE BLANKS BELOW TO FINISH THE PROGRAM */

int linearInd(int i, int j, int length){

/* Given the 2D index(i, j) and the length of each
 row, return its 1D index in row-major order */
return (1)____________;

}

bool checkSubMatrix(int* mat, int m, int n){
 int i,j;
 for (i = 0; (2) __________; i=i+2){
 for (j = 0; (3) __________; j=j+2){

/* calculate the upper bounds for row and
 column index within the 2x2 submatrix*/

 int row_bound = (4)______;
 int col_bound = (5)______;

/* check if row_bound and col_bound are within
 range of the matrix */

 if((6)__){
 /*calculate the left diagonal sum */
 int left_sum = (7)_______________________;
 /* calculate the right diagonal sum */
 int right_sum = (8)______________________;
 if(left_sum <= right_sum){
 (9)___________;
 }
 }
 }
 }

 (10)______________;
}

	
	
	 	

	
	
	
	

4	

Problem	2	(30	points):	Recursion	
The	easter	bunny	has	contracted	you	to	create	a	program	to	map	out	where	eggs	can	
be	hidden	for	next	year’s	easter	egg	hunt	(they	really	start	preparations	early).	To	
facilitate	this,	you	must	fill	in	a	recursive	function	place_eggs	which	uses	basic	
backtracking	to	find	a	proper	placement,	if	there	is	one.	This	function	will	go	
through	the	rows	one	at	a	time	placing	an	egg	if	possible	until	it	runs	through	all	
rows	or	fails	to	find	a	solution.	
The	rules	for	the	placement	are	as	follows:	

1. The	grid	is	a	7x7	field	
2. Empty	spots	where	eggs	can	be	placed	are	marked	‘o’	
3. Existing	eggs	are	marked	‘x’	
4. Blocked	locations	(like	walls/shrubs/etc)	where	eggs	cannot	be	placed	are	

marked	‘+’	
5. There	must	be	exactly	one	egg	in	each	row	
6. No	eggs	may	share	a	column	

To	aid	in	your	solution,	the	helper	functions	is_spot_valid	and	is_row_valid	have	
been	provided.	Their	function	prototype	is	shown	below.	The	first	helper	function	
determines	if	a	spot	can	be	used	for	an	egg	given	all	the	above	constraints,	the	
second	function	determines	if	a	row	can	have	an	egg	placed	in	it.	
/* returns 1 for spot which can be used, 0 for spot which
 does not meet above requirements */	
 int is_spot_valid(char grid[7][7], int row, int col);
	
/* returns 1 for row which can be used, 0 for row with
 egg already in it */	
 int is_row_valid(char grid[7][7], int row);

Two	example	runs	are	shown	below	of	the	function:	

								

	
	
	
	

5	

FILL IN THE BLANKS BELOW TO FINISH THE PROGRAM

/* function to place eggs into grid
 backtracks with each row
 returns 1 on success, 0 on failure */
int place_eggs(char grid[7][7]){

 /* part 1: find the row to fill */
 int row;
 for(row=0;row(1)_______;row++){
 //exit if we find valid row
 if(is_row_valid((2)______,______))

 (3)______;
 }

 /* base case:

 there is no need to fill a row (we are done),
 happens when no valid row found */

 if((4)______)
 return 1;

 /* part 2: test every possible cell in the row */
 int col;
 for(col=0;col(5)______;col++){
 /* check if spot is valid */
 if(is_spot_valid((6)____,____,____)){
 (7)________________; /* fill with egg */

 /* recursively try to solve grid */
 if((8)____________)
 return (9)________;

 (10)_______________; /* backtrack */
 }
 }

 return 0; /* if every choice fails */
}

	 	

	
	
	
	

6	

Problem	3	(20	points):	C	to	LC-3	Conversion	
For	this	question,	you	will	be	converting	a	function	foo	from	C	to	LC-3.	
	
Here	is	the	code	that	we	ask	you	to	convert	(note	that	you	only	need	to	convert	foo	
to	LC-3).	You	must	use	and	conform	to	the	LC-3	calling	conventions	we	have	
described	in	class.

int foo(int a, int b) {
 int res_1, res_2, final_result;

 /* code omitted for simplicity */

 return final_result;
}

int main() {
 int answer = foo(1,2);

 /* do something with answer */

 return 0;
}
	
	
	
Recall	that	a	function’s	activation	record	has	the	following	format:	

Local	Variables	

Caller’s	Frame	Pointer	

Return	Address	

Return	Value	

Arguments	

	
	 	

	
	
	
	

7	

Part	A	(8	points).	
	
Draw	the	complete	run-time	stack	activation	record	(stack	frame)	for	a	call	of	
foo(1,2).	You	MUST	conform	to	the	LC-3	calling	conventions	we	have	described	
in	class,	including	callee	activation	record	build-up.	Use	labels	(variable	names)	
instead	of	values	whenever	possible.		
	

8.		

7.		

6.	

5.		

4.	

3.	

2.	

							1.		

Main’s	activation	record	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

8	

Part	B	(12	points).	
	
For	this	part,	you	should	convert	foo	from	C	to	LC-3	by	filling	in	the	blank	lines.	
Consider	that	the	caller	(i.e.	main	function)	has	pushed	the	arguments	into	the	
activation	record	and	the	program	control	is	just	transferred	to	the	callee	function	
(i.e.	foo).	We	have	provided	comments	for	what	you	have	to	write	for	each	line	of	
code.	For	each	line	of	code,	you	must	implement	what	is	described	in	the	
comments	for	that	line.	Note	that	“var.”	stands	for	“variable”,	“ptr.”	stands	for	
“pointer”,	“ret.”	stands	for	return,	and	“addr.”	stands	for	address.	

; You may assume R0~R5 all contain zeros.
; R6 is the stack pointer. R5 is the frame pointer.
; R7 contains the return address.

FOO
;;Callee set-up
(1) ______________ ; allocate space for ret. value and ret. addr.
(2) ______________ ; save ret. addr. to stack
(3) ______________ ; allocate space for caller’s frame ptr.
(4) ______________ ; save caller’s frame ptr. to stack
(5) ______________ ; allocate space for local variables
(6) ______________ ; update frame ptr.	

;;function logic omitted for simplicity

;;set ret. value
(7) ______________ ; Using R5, load var. final_result into R0
(8) ______________ ; Using R5, save ret. value of foo to stack

;;Callee tear-down
(9) ______________ ; pop local variables off stack
(10) ______________; Using R6, restore caller’s frame ptr.
(11) ______________; Using R6, restore ret. addr.
(12) _____________ ; pop caller’s frame ptr. and ret. addr.

RET
	
	 	

	
	
	
	

9	

Problem	4	(14	points):	Concepts	
	
1.	(5	points)	The	following	function	call	to	sum()	will	compute	the	sum	of	the	array	
elements	in	an	integer	array.	What	is	the	size	of	the	first	argument	of	the	function	
sum()	in	bytes?	(Assume	you	are	on	a	32-bit	system	and	the	size	of	int	is	32	bits.)	

int main() {
 int array[5] = {1,2,3,4,5};
 int result;
 result = sum(array, 5);
 return 0;
}

Your	Answer:	____________________________________Bytes	
	
	
2.	(9	points)	Determine	whether	the	statements	are	true	for	the	following	code.		
	

typedef struct CourseStruct{
 int year;
 int class_number;
} course;

int main(){
 course A[2];
 course* B;
 course* C;

 A[0].year = 2021;

A[0].class_number = 220;
A[1].year = 2020;

 A[1].class_number = 120;

B = A;
C = &(A[1]);

 return 0;
}

Your	Answer:
a. B	==	&(A[0])	 	 	 	 TRUE	 	 FALSE	
	
b. B->class_number	==	120	 		 TRUE	 	 FALSE	

	
c. (B+1)	==	C	 	 	 	 TRUE	 	 FALSE	

	
	
	
	

10	

	
	
	

	
	
	
	

11	

	
	

End	of	ECE	220	Midterm	Exam	2	

