
1	

ECE220:	Computer	Systems	and	
Programming	

Past	Exam	

1. This	is	a	closed	book	closed notes exam
2. You	may	not	use	any	personal	electronic	devices,	such	as 

cellphone	and	calculator
3. Absolutely	no	interaction	between	students	is	allowed
4. Illegible	handwriting	will	be	graded	as	incorrect

Name:________________________________	

NetID:________________________________	

Room:________________________________	

								Question	1	(36	points):	_________________	

								Question	2	(22	points):	A________;	B________;	C________	

								Question	3	(42	points):	3.1________;	3.2________;	3.3________;	3.4________	

							Total	Score:	_________________	



	 2	

Problem	1	(30	points):	Check	for	Pythagorean	Theorem		
	
In	this	question,	you	will	complete	a	program	which	checks	the	following	condition:	

C2	=	A2	+	B2,	where	A,	B	and	C	are	three	input	numbers	
More	details:	

1. The	inputs	(A,	B,	C)	are	already	stored	in	a	stack	as	shown	below	and	they	
are	all	positive	numbers	and	small	enough	that	there	will	be	no	arithmetic	
overflow	even	when	squared.		

2. R6	is	the	stack	pointer,	pointing	at	the	next	available	location	on	the	stack.	
You	should	implement	stack	operations	directly	using	R6	rather	than	calling	
the	PUSH	and	POP	subroutines	as	in	MP2.	

3. The	subroutine	SQUARE	takes	one	input	from	R4	and	sets	the	output	in	R5	
(R5	=	R4*R4).	

4. If		C2	=	A2	+	B2,	R0	is	set	to	1.	Otherwise,	R0	is	set	to	0	(this	part	has	been	
done	for	you).	

5. Push	the	value	in	R0	onto	the	stack.		
6. Assume	no	stack	overflow	nor	underflow.	

	

	

x3FFA	 		

x3FFB	 	

x3FFC	 	

x3FFD	 	

x3FFE	 A	

x3FFF	 B	

x4000	 C	

	

	 	

ß	R6	



	 3	

Each	line	of	code	is	worth	2	points.		

.ORIG	x3000	
;	Pop	A	into	R1	in	next	two	lines		
	
_______________________________________________			;	line	1	
	
_______________________________________________			;	line	2	
;	Pop	B	into	R2	in	next	two	lines		
	
_______________________________________________			;	line	3	
	
_______________________________________________			;	line	4	
;	Pop	C	into	R3	in	next	two	lines			
	
_______________________________________________			;	line	5	
	
_______________________________________________			;	line	6	
AND	R0,	R0,	#0																		;	Set	R0	=	0	
	
;	Set	R1	=	R1	*	R1	in	following	three	lines	
;	Must	call	SQUARE	subroutine	
	
_______________________________________________			;	line	7	
	
_______________________________________________			;	line	8	
	
_______________________________________________			;	line	9	
	
;	Set	R2	=	R2	*	R2	in	following	three	lines	
;	Must	call	SQUARE	subroutine	
	
______________________________________________			;	line	10	
	
______________________________________________			;	line	11	
	
______________________________________________			;	line	12	
	
;	Set	R3	=	R3	*	R3	in	following	3	lines	
;	Must	call	SQUARE	subroutine	
	
______________________________________________			;	line	13	
	
______________________________________________			;	line	14	
	
______________________________________________			;	line	15	
	

NOT	R3,	R3										;	R3	=	-	C2	
ADD	R3,	R3,	#1		
	
ADD	R1,	R1,	R2				;	R1	=		A2	+	B2	
ADD	R1,	R1,	R3				;	R1	=		A2	+	B2	-	C2	
BRnp	CHECK_DONE	
ADD	R0,	R0,	#1	
	
CHECK_DONE	
;	Push	the	value	in	R0	onto	the	stack	in	following	
two	lines		
	
______________________________________________			;	line	16	
	
______________________________________________			;	line	17	
		
;	Stop	the	program	
	
______________________________________________			;	line	18	
	
	
;	SQUARE	subroutine	
;	Input				:	R4	
;	Output	:	R5	=	R4*R4	
SQUARE		
		ST	R3,	Save_R3	
		AND	R5,	R5,	#0	
		ADD	R3,	R4,	#0	
LOOP		
		ADD	R5,	R5,	R3	
		ADD	R4,	R4,	#-1	
		BRp	LOOP	
	
		LD	R3,	Save_R3	
RET	
	
Save_R3	.BLKW	#1	
	
	



	 4	

Problem	2:	Debug	a	Program		
Danny	implemented	a	program	that	reverses	the	contents	of	a	sequence	of	memory	
locations.	 That	 is,	 contents	 of	 x4000	 is	 swapped	 with	 that	 of	 x4009,	 x4001	 with	
x4008,	 x4002	 with	 x4007,	 and	 so	 on.	 The	 Main	 program	 calls	 the	 REVERSE	
subroutine	 which	 in	 turn	 uses	 a	 SWAP	 subroutine	 to	 swap	 the	 contents	 of	 two	
memory	 locations.	 REVERSE	 is	 supposed	 to	 return	 to	 the	Main	 program	once	 the	
value	of	the	starting	address	(in	R0)	becomes	larger	than	that	of	the	ending	address	
(in	R1).		
	
The	program	compiled	fine	but	it	falls	into	an	infinite	loop.	Help	Danny	find	and	fix	
the	bug.		
	
Line	
0	
	
	
1	
2	
3	
4	
	
	
	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
	
	
	
23	
24	
25	

	
			.ORIG	x3000	
			;		Main	program	
	
			LD	R0,	START	
			LD	R1,	END	
			JSR	REVERSE	
			HALT	
	
;	Reverse	Subroutine	
;	Input	R0,	R1;	Output	-	NONE	
		REVERSE	
	 ST	R0,	SAVER0_REVERSE	
	 ST	R1,	SAVER1_REVERSE	
	 ST	R2,	SAVER2_REVERSE	
	 ST	R3,	SAVER3_REVERSE	
					RLOOP	 	
	 JSR	SWAP	
	 ADD	R0,	R0,	#1	
	 ADD	R1,	R1,	#-1	
	 NOT	R2,	R0	
	 ADD	R2,	R2,	#1	
	 ADD	R3,	R2,	R1	
	 BRp	RLOOP	 	
	 LD	R0,	SAVER0_REVERSE	
	 LD	R1,	SAVER1_REVERSE	
	 LD	R2,	SAVER2_REVERSE	
	 LD	R3,	SAVER3_REVERSE	 	
	 RET	
	
;	Swap	Subroutine		
;	Input	R0,	R1;	Output	-	NONE	
		SWAP	
	 ST	R2,	SAVER2_SWAP	
	 ST	R3,	SAVER3_SWAP	



	 5	

26	
27	
28	
29	
30	
31	
32	
	
33	
34	
35	
36	
37	
38	
39	
40	
41	

	 LDR	R2,	R0,	#0	
	 LDR	R3,	R1,	#0		
	 STR	R2,	R1,	#0		
	 STR	R3,	R0,	#0		
	 LD	R2,	SAVER2_SWAP	
	 LD	R3,	SAVER3_SWAP	
	 RET	
	
START	 .FILL	 x4000	
END	 .FILL	 x4009	
SAVER0_REVERSE	 .BLKW	#1	
SAVER1_REVERSE	 .BLKW	#1	
SAVER2_REVERSE	 .BLKW	#1	
SAVER3_REVERSE	 .BLKW	#1	
SAVER2_SWAP	.BLKW	#1	
SAVER3_SWAP	.BLKW	#1	
.END	

	

	
Part	A	(7	points).	Danny	suspects	that	the	RLOOP	on	lines	10–17	never	finishes;	i.e.,	
line	18	 is	never	reached.	 Is	he	correct	 in	his	suspicion	or	not?	 Justify	your	answer	
(use	no	more	than	30	words).	
	
Your	Answer:	

	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	

	
	 	



	 6	

Part	B	(7	points).	Why	does	the	program	get	into	an	infinite	loop	and	between	which	
line(s)?	(use	no	more	than	30	words)	
	
Your	Answer:	

	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
	
Part	 C	 (8	 points).	 Please	 provide	 a	 solution	 for	 the	 problem	 by	 modifying	 or	
inserting	 instructions.	Maximum	4	 lines	are	allowed.	Please	be	very	specific	about	
the	lines	you	are	modifying/inserting.		

e.g.,	between	lines	30	and	31,	insert	ADD	R5,	R5,	R5		
								or	
								change	line	30	to	ADD	R5,	R5,	R5	

	
Your	Answer:	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
	 	



	 7	

Problem	3:	Concepts	
	
3.1	(2	points)	LC-3	is	a	16-bit	system.	Now	suppose	you	have	a	32-bit	system,	what	
is	its	address	space	(number	of	unique	memory	locations)?		
	
Your	Answer:		
	
_________________________________________________________________________________________________	
	
	
	
3.2	(5	points)	What	are	some	benefits	of	using	a	subroutine	in	LC-3?	(Choose	all	that	
apply)	

a) Hide	program	details	from	others	
b) Separate	program	from	underlying	hardware	
c) Make	code	more	organized	
d) Create	libraries	for	others	to	use	
e) Make	debugging	easier	

	
Your	Answer:		
	
_________________________________________________________________________________________________	
	
	
	
	
	
	
	
	
	 	



	 8	

3.3	The	following	piece	of	code	is	given	to	you	to	handle	I/O.	Does	it	describe	
interrupt-driven	I/O	or	polling	I/O?	Justify	your	choice	using	no	more	than	30	
words.	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	

	
Choose	one	(2	points):	
	
Interrupt-driven	I/O		 	 Polling	I/O	
	
	
Justify	your	choice	using	no	more	than	30	words	(3	points):	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
_________________________________________________________________________________________________	
	
	
	
	
	
	 	

.ORIG	x3000	
	
KCHECK		 LDI	R0,	KBSR	
						 	 BRzp	KCHECK	
						 	 LDI	R0,	KBDR	
DCHECK	 LDI	R1,	DSR	
	 	 BRzp	DCHECK	
	 	 STI	R0,	DDR	
HALT	
	
KBSR		 .FILL		 xFE00	
KBDR		.FILL		 xFE02	
DSR	 .FILL		 xFE04	
DDR			 .FILL		 xFE06	
.END	
	



	 9	

3.4	Consider	the	evaluation	of	postfix	expression	using	a	stack	in	MP2.	Assume	that	
all	operands	in	the	expression	are	single-digit.		You	need	to	apply	the	same	method	
used	in	MP2	to	evaluate	the	postfix	expression	given	below.	When	an	operand	is	
encountered,	it	should	be	pushed	onto	the	stack.	When	an	operator	is	encountered,	
two	numbers	should	be	popped	off	the	stack	to	perform	the	arithmetic	operation,	
and	the	result	should	be	pushed	onto	the	stack.		
	
Postfix	expression:	487-3+/2*	
	
Part	A:	find	the	result	of	this	postfix	expression	
	
Your	Answer:	487-3+/2*	equals	______________________________________	(5	points)	
	
Part	B:	Given	that	the	stack	starts	at	memory	location	x4000.	Fill	out	the	stack	at	the	
following	instances.	Assume	that	the	stack	is	empty	at	the	beginning,	be	sure	to	
include	all	the	values	at	each	instance.		
	 	
(1)	Right	before	the	first	arithmetic	operation	(i.e.,	before	its	operands	are	popped	
off	the	stack).	(5	points)	

x3FFA	 		

x3FFB	 	

x3FFC	 	

x3FFD	 	

x3FFE	 	

x3FFF	 	

x4000	 	

	
(2)	Right	after	the	first	arithmetic	operation	(i.e.,	after	its	result	has	been	pushed	
onto	the	stack).		(5	points)	

x3FFA	 		

x3FFB	 	

x3FFC	 	

x3FFD	 	

x3FFE	 	

x3FFF	 	

x4000	 	



	 10	

Postfix	expression:	487-3+/2*	
	
(3)	Right	before	the	second	arithmetic	operation	(i.e.,	before	its	operands	are	
popped	off	the	stack).	(5	points)	

x3FFA	 		

x3FFB	 	

x3FFC	 	

x3FFD	 	

x3FFE	 	

x3FFF	 	

x4000	 	

	
	
(4)	Right	after	the	second	arithmetic	operation	(i.e.,	after	its	result	has	been	pushed	
onto	the	stack).	(5	points)	

x3FFA	 		

x3FFB	 	

x3FFC	 	

x3FFD	 	

x3FFE	 	

x3FFF	 	

x4000	 	

	
	
(5)	Right	after	the	third	arithmetic	operation	(i.e.,	after	its	result	has	been	pushed	
onto	the	stack).	(5	points)	

x3FFA	 		

x3FFB	 	

x3FFC	 	

x3FFD	 	

x3FFE	 	

x3FFF	 	

x4000	 	



	 11	

	

	
	
	



	 12	

	
	
	


