w

ECE220: Computer Systems and

Programming

Past Exam

This is a closed book closed notes exam

You may not use any personal electronic devices, such as

cellphone and calculator

Absolutely no interaction between students is allowed

[llegible handwriting will be graded as incorrect

Name:

NetID:

Room:

Question 1 (36 points):

Question 2 (22 points): A ; B ; C

0 3.4

Question 3 (42 points): 3.1 ; 3.2 ; 3.3

Total Score:

Problem 1 (30 points): Check for Pythagorean Theorem

In this question, you will complete a program which checks the following condition:

C%2 =A% + B2, where A, B and C are three input numbers

More details:

1. The inputs (A, B, C) are already stored in a stack as shown below and they
are all positive numbers and small enough that there will be no arithmetic
overflow even when squared.

2. Ré6is the stack pointer, pointing at the next available location on the stack.
You should implement stack operations directly using R6 rather than calling
the PUSH and POP subroutines as in MP2.

3. The subroutine SQUARE takes one input from R4 and sets the output in R5
(R5 = R4*R4).

4. If C2=A?+B? RO is setto 1. Otherwise, RO is set to 0 (this part has been
done for you).

5. Push the value in RO onto the stack.

6. Assume no stack overflow nor underflow.

x3FFA

x3FFB

x3FFC

x3FFD < R6

x3FFE A

x3FFF B

x4000 C

Each line of code is worth 2 points.

.ORIG x3000
; Pop A into R1 in next two lines

;line 1
; line 2
; Pop B into R2 in next two lines
; line 3
; line 4
; Pop Cinto R3 in next two lines
;line 5
;line 6
AND RO, RO, #0 ;SetR0O=0
; Set R1 = R1 *R1 in following three lines
; Must call SQUARE subroutine
;line 7
;line 8
;line 9
; Set R2 = R2 * R2 in following three lines
; Must call SQUARE subroutine
;line 10
;line 11
;line 12
; Set R3 = R3 *R3 in following 3 lines
; Must call SQUARE subroutine
;line 13
; line 14
;line 15

NOT R3, R3 ;R3=-C2

ADD R3, R3, #1

ADDR1,R1,RZ ;R1= A2+ B2
ADDR1,R1,R3 ;R1= Az+ B2-(2
BRnp CHECK_DONE

ADD RO, RO, #1

CHECK_DONE

; Push the value in RO onto the stack in following
two lines

;line 16

;line 17

; Stop the program

;line 18

; SQUARE subroutine
; Input : R4
; Output : R5 = R4*R4
SQUARE
ST R3, Save_R3
AND R5, R5, #0
ADD R3, R4, #0
LOOP
ADD R5,R5,R3
ADD R4, R4, #-1
BRp LOOP

LD R3, Save_R3
RET

Save_R3 .BLKW #1

Problem 2: Debug a Program

Danny implemented a program that reverses the contents of a sequence of memory
locations. That is, contents of x4000 is swapped with that of x4009, x4001 with
x4008, x4002 with x4007, and so on. The Main program calls the REVERSE
subroutine which in turn uses a SWAP subroutine to swap the contents of two
memory locations. REVERSE is supposed to return to the Main program once the
value of the starting address (in RO) becomes larger than that of the ending address

(in R1).
The program compiled fine but it falls into an infinite loop. Help Danny find and fix
the bug.
Line
0 .ORIG x3000
; Main program

1 LD RO, START
2 LD R1, END
3 JSR REVERSE
4 HALT

; Reverse Subroutine

; Input RO, R1; Output - NONE
5 REVERSE
6 ST RO, SAVERO_REVERSE
7 ST R1, SAVER1_REVERSE
8 ST R2, SAVER2_REVERSE
9 ST R3, SAVER3_REVERSE
10 RLOOP
11 JSR SWAP
12 ADD RO, RO, #1
13 ADDR1,R1, #-1
14 NOT R2, RO
15 ADD R2,R2, #1
16 ADD R3,R2,R1
17 BRp RLOOP
18 LD RO, SAVERO_REVERSE
19 LD R1, SAVER1_REVERSE
20 LD R2, SAVER2_REVERSE
21 LD R3, SAVER3_REVERSE
22 RET

; Swap Subroutine

; Input RO, R1; Output - NONE
23 SWAP
24 ST R2, SAVER2_SWAP
25 ST R3, SAVER3_SWAP

26 LDR RZ, RO, #0

27 LDR R3,R1, #0

28 STRRZ,R1, #0

29 STR R3, R0, #0

30 LD RZ2, SAVER2_SWAP

31 LD R3, SAVER3_SWAP

32 RET

33 START .FILL x4000

34 END .FILL x4009

35 SAVERO_REVERSE .BLKW #1
36 SAVER1_REVERSE .BLKW #1
37 SAVER2Z_REVERSE .BLKW #1
38 SAVER3_REVERSE .BLKW #1
39 SAVERZ2_SWAP.BLKW #1

40 SAVER3_SWAP.BLKW #1

41 .END

Part A (7 points). Danny suspects that the RLOOP on lines 10-17 never finishes; i.e.,
line 18 is never reached. Is he correct in his suspicion or not? Justify your answer
(use no more than 30 words).

Your Answer:

Part B (7 points). Why does the program get into an infinite loop and between which
line(s)? (use no more than 30 words)

Your Answer:

Part C (8 points). Please provide a solution for the problem by modifying or
inserting instructions. Maximum 4 lines are allowed. Please be very specific about

the lines you are modifying/inserting.
e.g., between lines 30 and 31, insert ADD R5, R5, R5

or
change line 30 to ADD R5, R5, R5

Your Answer:

Problem 3: Concepts

3.1 (2 points) LC-3 is a 16-bit system. Now suppose you have a 32-bit system, what
is its address space (number of unique memory locations)?

Your Answer:

3.2 (5 points) What are some benefits of using a subroutine in LC-3? (Choose all that
apply)

a) Hide program details from others

b) Separate program from underlying hardware

c) Make code more organized

d) Create libraries for others to use

e) Make debugging easier

Your Answer:

3.3 The following piece of code is given to you to handle I/0. Does it describe
interrupt-driven I/0 or polling I/0? Justify your choice using no more than 30
words.

.ORIG x3000

KCHECK LDIRO, KBSR
BRzp KCHECK
LDI RO, KBDR
DCHECK LDIRI1,DSR
BRzp DCHECK
STI RO, DDR
HALT

KBSR .FILL xFEOO
KBDR .FILL xFEO02
DSR FILL xFEO04
DDR FILL xFEO06
.END

Choose one (2 points):

Interrupt-driven I/0 Polling I/0

Justify your choice using no more than 30 words (3 points):

3.4 Consider the evaluation of postfix expression using a stack in MP2. Assume that
all operands in the expression are single-digit. You need to apply the same method
used in MP2 to evaluate the postfix expression given below. When an operand is
encountered, it should be pushed onto the stack. When an operator is encountered,
two numbers should be popped off the stack to perform the arithmetic operation,
and the result should be pushed onto the stack.

Postfix expression: 487-3+/2*
Part A: find the result of this postfix expression

Your Answer: 487-3+/2* equals (5 points)

Part B: Given that the stack starts at memory location x4000. Fill out the stack at the
following instances. Assume that the stack is empty at the beginning, be sure to
include all the values at each instance.

(1) Right before the first arithmetic operation (i.e., before its operands are popped
off the stack). (5 points)
x3FFA

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

(2) Right after the first arithmetic operation (i.e., after its result has been pushed
onto the stack). (5 points)
x3FFA

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

Postfix expression: 487-3+/2*

(3) Right before the second arithmetic operation (i.e., before its operands are
popped off the stack). (5 points)
x3FFA

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

(4) Right after the second arithmetic operation (i.e., after its result has been pushed

onto the stack). (5 points)
x3FFA

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

(5) Right after the third arithmetic operation (i.e., after its result has been pushed
onto the stack). (5 points)
x3FFA

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

10

Table E.2 The Standard ASCII Table

ASCII ASCII ASCII ASCII
Character Dec Hex | Character Dec Hex | Character Dec Hex | Character Dec Hex
nul 0 00 sp 32 20) 64 40 ' 96 60
soh 1 01 1 33 21 A 65 41 a 97 61
stx 2 02 " 34 22 B 66 42 b 98 62
etx 3 03 = 35 23 C 67 43 c 99 63
eot 4 04 3 36 24 D 68 44 d 100 64
eng 5 05 % 37 25 E 69 45 e 101 65
ack 6 06 & 38 26 F 70 46 £ 102 66
bel 7 07 ' 39 27 G 71 47 g 103 &7
bs 8 08 (40 28 H 72 48 h 104 68
ht 9 09) 41 29 I 73 49 i 105 69
1f 10 0A * 42 2A J 74 4A 3 106 6A
vt 11 0B + 43 2B K 75 4B k 107 6B
ff 12 oC ’ 44 2C L 76 4C 1 108 &C
cr 13 oD - 45 2D M 77 4D m 109 6D
S0 14 0OE . 46 2E N 78 4E n 110 6E
si 15 OF / 47 2F 0 79 4F o 111 6F
dle 16 10 0 48 30 =] 80 50 P 112 70
dci 17 11 1 49 31 Q 81 51 a 113 71
dc2 18 12 2 50 32 R 82 52 r 114 72
dc3 19 13 3 51 33 s 83 53 s 115 73
dc4 20 14 4 52 34 T 84 54 t 116 74
nak 21 15 5 53 35 U 85 55 u 117 75
syn 22 16 6 54 36 v 86 56 v 118 76
etb 23 17 7 55 37 W 87 57 w 119 77
can 24 18 a 56 38 X 88 58 x 120 78
em 25 19 9 57 39 Y 89 59 Y 121 79
sub 26 1A : 58 3A z 90 5A z 122 7A
esc 27 1B ; 59 3B [91 5B { 123 7B
fs 28 1C < 60 3C \ 92 5C | 124 7C
gs 29 1D = 61 3D] 93 5D } 125 7D
rs 30 1E > 62 3E . 94 5E - 126 7E
us 31 1F ? 63 3F — 95 5F del 127 7F

11

ADD

ADD

AND

AND

BR

JMP

JSR

TRAP

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

T T T T T T T T T T

0001 DR SR1 [0]| 00 | SR2

1 1 1 1 1 1 1 1 1 1
DR « SR1 + SR2, Setcc

T T T T T T T T T T T

0001 DR SR1 |1 imm5

1 1 1 1 1 1 1 1 1 1 1
DR « SR1 + SEXT(immb5), Setcc

T T T T T T T T T T

0101 DR SR1 (0] 00 | SR2

1 1 1 1 1 1 1 1 1 1
DR « SR1 AND SR2, Setcc

LI I I T T LI LI

0101 DR SR1 |1 imm5

L1 | | 1 1 L1 |-

DR « SR1 AND SEXT(imm5), Setcc

T T T T
0000 |n|z|p PCoffset9

((n AND N) OR (z AND Z) OR (p AND P)):

PC « PC + SEXT(PCoffset9)

T T T T T T T T T T T T

1100 000 |BaseR 000000

1 1 1 1 1 1 1 1 1 1 1 1
PC « BaseR

T T T T T T T T T T T T T

0100 1 PCoffset11

1 1 1 1 1 1 1 1 1 1 1 1 1

R7 « PC, PC « PC + SEXT(PCoffset11)

T T T
1" 0000
1 1

T T T
11
1

1T 1T 1T
trapvect8
1 1 1 1 1

R7 « PC, PC « M[ZEXT(trapvect8)]

ADD DR, SR1, SR2

ADD DR, SR1, imm5

AND DR, SR1, SR2

AND DR, SR1, imm5

BR{nzp} PCoffset9

JMP BaseR

JSR PCoffset11

TRAP trapvect8

LD

LDI

LDR

LEA

NOT

ST

STI

STR

T
0010
1

T T
DR PCoffset9
1 1

DR « M[PC + SEXT(PCoffset9)], Setcc

1010
1 1 1

DR PCoffset9
1 1 1 1 1 1

DR « M[M[PC + SEXT(PCoffset9)]], Setcc

L

0110
1 1 1

T T T T T T T
DR |BaseR
1 1

T

offset6

T

DR « M[BaseR + SEXT(offset6)], Setcc

T T
1110
1 1

T I I I I T
DR PCoffset9
1 | 11

DR « PC

+ SEXT(PCoffset9), Setcc

T
1001
L1 1

T
11111

T
1
!

DR « NOT SR, Setcc

T
0011
1

SR PCoffset9

M[PC + SEXT(PCoffset9)] « SR

T
SR PCoffset9

T

T T
1011
1 1 1 1 1 1 1 1 1 1 1 1 1
M[M[PC + SEXT(PCoffsetd)]] « SR
T T T T T T T T T T

0111
1 1 1

SR [BaseR
1 1

offset6
1 1 1

_,_Emmmm_ + SEXT(offsetf)] « SR

LD DR, PCoffset9

LDI DR, PCoffset9

LDR DR, BaseR, offset6

LEA DR, PCoffset9

NOT DR, SR

ST SR, PCoffset9

STI SR, PCoffset9

STR SR, BaseR, offset6

12

