
1	

ECE220:	Computer	Systems	and	
Programming	

Midterm	Exam	1	

Name:________________________________	

NetID:________________________________	

Room:________________________________	



2	

Problem	1	(30	points):	Phone	Number	

Determine	if	a	user	input	is	a	valid	phone	number	or	not.	A	valid	phone	number	is	in	
the	following	format	(where	x	means	any	digit	0-9):	

xxxxxxxxxx	

Each	input	must	also	have	no	leading	or	trailing	whitespace.	(There	should	be	no	
tabs	or	spaces	at	the	beginning	or	end).	

After	the	user	types	their	input	and	presses	enter,	your	program	should	then	print	
“Valid	Phone	Number.”	if	the	phone	number	is	valid	otherwise	print	“Invalid	Phone	
Number.”	

Your	program	should	not	print	whether	the	input	is	a	valid	phone	number	or	
not	until	after	the	user	presses	enter.		

Part	1	–	Getting	inputs	without	using	TRAP	(10	points):	

For	this	part	you	must	write	code	that	gets	the	user	input	and	echos	it	to	the	screen	
without	using	any	trap	subroutines.	The	user	inputs	should	be	stored	starting	at	
memory	address	x5000.	You	cannot	use	IN,	GETC,	OUT,	etc.	in	Part	1.	Think	back	
to	how	LC-3	reads	input	with	the	KBSR	and	KBDR	and	prints	output	with	the	DSR	
and	DDR.	If	you	cannot	successfully	do	part	1	you	can	use	GETC/IN/OUT	but	will	
lose	all	points	for	this	part.	

Part	2	–	Checking	whether	inputs	are	valid	(20	points):	

For	this	part	you	must	determine	if	the	phone	number	entered	is	valid	or	not	and	
print	the	corresponding	message	to	the	console.	A	valid	phone	number	has	exactly	
10	digits	between	0	to	9.	You	can	use	TRAP	in	Part	2.	

Example:		
0123456789	 	–	is	a	valid	phone	number	
21730#													–	is	not	a	valid	phone	number	
217300		0000	–	is	not	a	valid	phone	number	

Write	your	program	in	phone_num.asm.	You	are	not	required	to	use	subroutines	in	
this	problem,	but	you	may	write	subroutines	if	you	like.



	 3	

Problem	2	(30	points):	Print	Number	in	Base	7	
	
Write	a	program	in	base7.asm	to	print	a	positive	value	stored	in	R3	in	base	7	
format.	
	
Algorithm	
1)	Divide	value	stored	in	R3	by	7.	Store	quotient	in	R3	and	push	remainder	to	stack.	
2)	If	quotient	(value	in	R3)	is	not	0,	go	to	step	1	
3)	Pop	values	off	the	stack	one	at	a	time	till	the	stack	is	empty.	Add	ASCII	offset	for	
'0'	and	print	to	screen.	You	do	not	need	to	print	the	‘x’	in	front.		
	

You	can	use	any	TRAP	you	find	useful.	The	DIV,	PUSH	and	POP	subroutines	are	given	
to	you.	PUSH	and	POP	subroutines	are	the	same	as	the	ones	given	in	lab	and	MP.	
Stack	starts	at	x4000	and	ends	at	x3FF0,	which	means	the	first	available	spot	on	the	
stack	is	at	x4000	and	the	last	available	spot	at	x3FF0.	You	are	not	required	to	use	
subroutines	in	this	problem,	but	you	may	write	subroutines	if	you	like.	

	

Testing:	

Assembly	your	code	using	the	command:	

~$	lc3as	base7.asm	

You	may	test	your	code	using	the	following	command	and	set	R3	to	9:	

~$	lc3sim	base7.obj	

register	R3	9	

finish	

	

	

	

	
	 	



	 4	

Problem	3	(30	points):	Reverse	Characters	

You	will	be	provided	n	characters,	where	n	is	a	positive	number	stored	in	memory	
location	x4FFF.	These	characters	are	stored	in	sequential	memory	addresses,	
beginning	at	x5000.	Your	code	should	swap	the	order	of	the	characters,	so	the	last	
character	appears	at	x5000,	the	second	to	last	character	at	x5001,	etc.	

	

SWAPMEM:	Implement	this	subroutine	at	the	label	SWAPMEM.	The	inputs	are	R0	
and	R1,	which	contain	memory	addresses.	If	mem[R0]=A	and	mem[R1]=B,	then	
after	the	subroutine,	mem[R0]=B	and	mem[R1]=A.		

REVERSE:	Implement	this	subroutine	at	the	label	REVERSE.		This	code	should	
reverse	the	order	of	the	characters	in	memory,	so	memory	address	x5000	is	
swapped	with	x5009,	x5001	with	x5008,	and	so	on.	SWAPMEM	subroutine	must	be	
be	called	here	to	swap	addresses,	not	in	the	main	user	program.	

Details:	

• Code	in	LC-3	assembly	in	reverse.asm.	You	may	define	extra	labels	and	
values	as	needed.	

• You	may	use	any	TRAPs	your	find	useful.	

• You	must	use	subroutines,	with	the	JSR	and	RET	instructions,	or	you	may	
lose	points.	

Testing:		

Assemble	your	code	and	the	test	input	file	using	the	command	
~$	lc3as	reverse.asm	
~$	lc3as	input.asm	
You	may	test	your	code	using	the	following	commands	for	reversing	10	characters:	
~$	lc3sim	
file	input.obj	
file	reverse.obj	
finish	
Check	your	output	using	the	command	
dump	x5000	
	
	
	



	 5	

Expected	Output	

	

	

Memory	Address	 Value	

x5000	 x0030	

x5001	 x0039	

x5002	 x0038	

x5003	 x0037	

x5004	 x0036	

x5005	 x0035	

x5006	 x0034	

x5007	 x0033	

x5008	 x0032	

x5009	 x0031	

	

	

	 	



	 6	

Problem4:	Concepts	(10	points)	
	
In	prob4.txt,	record	your	answer	to	the	following	short	answer	questions.	Please	
limit	each	answer	to	no	more	than	3	sentences.		
	
	
1. In	LC-3,	what	is	the	size	of	MAR	and	MDR?	And	explain	why.	(5	points)	
	
	
	
2. What	is	the	defining	characteristic	of	a	stack	(in	terms	of	how	it	is	being	

accessed)?	(5	points)	
	
	
	
	
	 	



	 7	

	

	
	
	



	 8	

	
	 	



	 9	

	
	
	
	
	
	
	
	
	

End	of	ECE	220	Midterm	Exam	1	
	


