
	

@	2021	–	2022	ECE	Illinois.	All	rights	reserved.	
	

1	

ECE	220:	Computer	Systems	and	
Programming	

	
Past	Exam	

	
	
	

	
Name:________________________________	

NetID:________________________________	

Room:________________________________	

	
Question	1	(25	points):	_________________	

Question	2	(40	points):	_________________	

Question	3	(35	points):	_________________	

Total	Score:	_________________	

	 	

	

@	2021	–	2022	ECE	Illinois.	All	rights	reserved.	
	

2	

Problem	1	(25	points):	Removing	Duplicates	from	an	Array		
	
In	this	problem,	you	need	to	remove	all	the	duplicates	in	an	array	of	integers.	
Solving	this	problem	involves	removing	duplicate	data	items	in	an	sorted	array,	and	
returning	the	number	of	unique	integers.		If	there	are	m	distinct	integer	values	in	an	
array	of	size	n,	then	those	m	values	will	appear	in	the	first	m	locations.
	
Assume	you	have	a	sorted	array	of	n	integers	in	ascending	order,	n	>	0.		Your	
algorithm	should	track	the	location	of	the	last	unique	element	(int	lastUnique)	as	it	
scans	the	array	from	0	to	n-1.		The	next	unique	element	is	copied	into	the	next	
available	position	to	the	lastUnique	slot.	The	following	example	illustrates	how	your	
algorithm	should	operate.		
	 	 	 	
Example: arr[] = [1,2,2,3,4,5,6,6,8,9]

After each iteration the array and lastUnique value will look like:

[1, 2, 2, 3, 4, 5, 6, 6, 8, 9] i = 0 ; lastUnique = 0
[1, 2, 2, 3, 4, 5, 6, 6, 8, 9] i = 1 ; lastUnique = 1
[1, 2, 2, 3, 4, 5, 6, 6, 8, 9] i = 2 ; lastUnique = 1
[1, 2, 3, 3, 4, 5, 6, 6, 8, 9] i = 3 ; lastUnique = 2
[1, 2, 3, 4, 4, 5, 6, 6, 8, 9] i = 4 ; lastUnique = 3
[1, 2, 3, 4, 5, 5, 6, 6, 8, 9] i = 5 ; lastUnique = 4
[1, 2, 3, 4, 5, 6, 6, 6, 8, 9] i = 6 ; lastUnique = 5
[1, 2, 3, 4, 5, 6, 6, 6, 8, 9] i = 7 ; lastUnique = 5
[1, 2, 3, 4, 5, 6, 8, 6, 8, 9] i = 8 ; lastUnique = 6
[1, 2, 3, 4, 5, 6, 8, 9, 8, 9] i = 9 ; lastUnique = 7

	

	 	

	

@	2021	–	2022	ECE	Illinois.	All	rights	reserved.	
	

3	

int RemoveDuplicates(int *arr, int n){

 int lastUnique = 0;

 int i = 0;

 for (i = 0; i<n; i++) {

 if (___) {

}

 }

 return ___;

}

int main(){
 int arr[] = {3, 9, 12, 22, 10, 11, 22, 11, 90};

int n = sizeof(arr)/sizeof(arr[0]);
/* n is the number of elements in the array */

 int m;

 BubbleSort(arr, n);
 m = RemoveDuplicates(arr, n);
 printf(“The array had %d unique elements\n”, m);
}
	

	

@	2021	–	2022	ECE	Illinois.	All	rights	reserved.	
	

4	

Problem	2	(40	points):	Recursive	Minimum	Path	Sum	
	
Given	a	m	x	n	grid	filled	with	positive	integers	numbers,	find	a	path	between	the	top	
left	cell	to	bottom	right	cell	which	minimizes	the	sum	of	all	numbers	along	its	path.	
Note	that	you	can	only	move	either	down	or	right	at	any	point.	The	input	grid	is	
stored	as	a	2D	array,	in	which	all	the	elements	are	positive	integers.	You	have	to	use	
recursion	to	implement	the	function	int	min_path_sum(int	grid[][],	int	m,	int	n,	int	
i,	int	j)	that	finds	a	minimal	path	sum	from	(0,0)	to	(i,j).	If	there	are	multiple	minimal	
paths,	you	can	return	the	sum	of	any	one.	

	 	
	
For	the	input	matrix	(m=	3,	n=3)	on	the	left,	your	
program	should	return	8,	because	the	path	
1→2→3→1→1	minimizes	the	sum.	

	

	
	
For	the	input	matrix	(m=	3,	n=4)	on	the	left,	
the	program	should	return	7,	because	the	path	
1→1→2→1→1à1	minimizes	the	sum.	
	

	
Algorithm	sketch:	to	find	the	minimum	path	between	the	top	left	cell	and	bottom	
right	cell,	we	will	start	from	the	end	(bottom	right)	and	traverse	backwards.	

1. First	check	if	a	current	cell	(i,	j)	is	one	of	the	base	cases:	
a. If	a	current	cell	(i,	j)	=	(0,	0),	that	is	the	path	has	reached	top-left,	then	

return	the	cost	of	the	current	cell	(grid[i,	j]).		
b. If	a	current	cell	is	outside	range,	return	a	very	large	cost.	For	example,	

you	can	use	the	available	constant	INT_MAX.	
2. Otherwise,	for	the	recursive	step:	

a. Compute	the	minimum	path	sum	from	(0,	0)	to	the		current	cell’s	left	
neighbor;	call	this	mps_l.	

b. Compute	the	minimum	path	sum	from	(0,	0)	to	the		current	cell’s	top	
neighbor;	call	this	mps_u.	

c. Return	the	cost	of	the	current	cell	+	min(mps_l,	mps_u);	where	the	min	
function	returns	the	smaller	of	the	two	arguments.	

	
	
	 	

1	 2	 3	

3	 4	 1	

2	 5	 1	

	

1	 3	 2	 1	

1	 2	 1	 2	

3	 2	 1	 1	

	

	

@	2021	–	2022	ECE	Illinois.	All	rights	reserved.	
	

5	

#include <stdio.h>
int min(int a, int b);
int min_path_sum(int grid[][], int m, int n, int i, int j);

int main() {

 /* First test */
 int grid1[3][3]={1, 2, 3, 3, 4, 1, 2, 5, 1};
 int m = 3;

int n = 3;
int sum = min_path_sum(grid1, m, n, m-1, n-1);
printf("min path sum of grid1 is %d \n", sum);

 /* Second test */
 int grid2[3][4]={1, 3, 2, 1, 1, 2, 1, 2, 3, 2, 1, 1};

m = 3;
n = 4;
sum = min_path_sum(grid2, m, n, m-1, n-1);
printf("min path sum of grid2 is %d \n", sum);

 return 0;
}

Part	A	(10	Points):	
int min(int a, int b){
/*this function returns the smaller of the two inputs */

__

__

__

__

__
}
	
	
	
	
	

	

@	2021	–	2022	ECE	Illinois.	All	rights	reserved.	
	

6	

Part	B	(30	Points):	
int min_path_sum(int grid[][], int m, int n, int i, int j){
/* int grid[][]: an mxn grid
 int m, n: the dimension of the 2d grid
 int i, j: current cell index
 return: minimum path sum from (0, 0) to (i, j) */
/* Your Code Starts Here */

__

__

__

__

__

__

__

__

__

__

}

	 	

	

@	2021	–	2022	ECE	Illinois.	All	rights	reserved.	
	

7	

Problem3:	Concepts	(30	points)	
	
Part	A	(15	points):		
An	engineer	implemented	a	program	that	reverses	contents	of	array	using	recursion.	
The	 correct	output	 for	array	with	01234	should	be	43210.	However,	 the	program	
does	not	work	as	intended.	Please	help	this	engineer	fix	the	code.		
	
#include	<stdio.h>	
void	ReverseArray(int	array[],	int	size)	{	
				int	start	=	0,	end	=	size	-	1,	temp;	
				if	(start	<	end)	{	
								temp	=	array[start];	
								array[start]	=	array[end];	
								array[end]	=	temp;	
	
								ReverseArray(array,	size	-	1);	
				}								
}	
	
int	main(){	
				int	array[5],	i;	
	
				for	(i	=	0;	i<5;	i++){	
								array[i]	=	i;	
				}	
	
				ReverseArray(array,	5);	
				printf("Reversed	Array:	");	
				for	(i	=	0;	i<5;	i++){	
								printf("%d	",	array[i]);	
				}	
	 printf("\n");	
				return	0;	
}	 	 	
	
What	will	be	the	output	of	the	current	program?	(7	points)	

Your	answer:	

	

@	2021	–	2022	ECE	Illinois.	All	rights	reserved.	
	

8	

How	should	this	engineer	fix	the	code	to	make	the	program	correctly	reverses	the	
contents	of	array?	Hint:	ReverseArray(array,	size-1)	is	wrong.	Please	write	the	
entire	syntax	for	the	line.	No	explanation	required.	(8	points)	

	
	
	
Part	B	(5	points)	
A	2-D	matrix	with	m	rows	and	n	columns	(m	≠	n)	is	stored	in	a	1-D	array	in	row-
major	order.		How	to	access	the	element	located	in	row	i	and	column	j	?	(Assume	
both	the	row	and	column	indices	start	from	0)	

(a) array[j * m + n]

(b) array[j * n + m]

(c) array[i * m + j]

(d) array[i * n + j]

	
Your	Answer:__	
	
	
	
Part	C	(5	points)	
Which	of	the	followings	can	randomly	generate	a	number	exactly	between	7	and	17?	

(a) rand() % 7 + 17

(b) rand() % 17 + 7

(c) rand() % 17 + 17

(d) rand() % 7 + 7

(e) rand() % 11 + 7

(f) rand() % 7 + 11

	
Your	Answer:__	
	

Your	answer:	

	

@	2021	–	2022	ECE	Illinois.	All	rights	reserved.	
	

9	

Part	D	(10	points)	
What	is	the	size	in	bytes	of	the	struct	shown	here	(assume	char	is	8	bits	and	int	is	32	
bits)?	(5	points)	
struct StudentStruct
{
 char Name[100];
 int UIN;
};	
	
Your	Answer:__	
	
	
struct StudentStruct student_arr[100];
struct StudentStruct *ptr = student_arr;
ptr = ptr + 1;
	
Where	is	the	pointer	“ptr”	pointing	to	now?	(5	points)	

(a) Name[1] in student_arr[0]

(b) Name[1] in student_arr[1]

(c) UIN in student_arr[0]

(d) Name[0] in student_arr[1]

	
Your	Answer:__	

	
	
	
	
	
	
	

End	of	ECE	220	Past	Exam	2	
	

