NAME				NETID			
	MIDTERM EXAM 1 - SOLUTIONS						
			(Closed book)				
ECE 442				March 1, 2007			
				7:	00 p.m. – 8:30	p.m.	
<u>Instructions</u> :	This examina	me, and NetID ation consists or der to receive	of 5 problems.				
	Problem 1	Problem 2	Problem 3	Problem 4	Problem 5	Total	

Formula Sheet

DIODE

$$I_D = I_S (e^{V_D/V_T} - 1)$$
, where $V_T = \frac{k_B T}{q} = 26 \text{ mV}$

BIPOLAR (NPN forward active $I_B>0$, $V_{CE}>V_{CE,sat}$)

$$\begin{split} I_C &= I_S e^{V_{BE}/V_T} \cdot \left(1 + \frac{V_{CE}}{V_A}\right) \cong I_S e^{V_{BE}/V_T} \text{ where } V_T = \frac{k_B T}{q} = 26 \text{ mV} \\ I_C &= \alpha I_E \\ I_C &= \beta I_B \cdot \left(1 + \frac{V_{CE}}{V_A}\right) \cong \beta I_B \\ \alpha &= \frac{\beta}{\beta + 1} \end{split}$$

MOSFET (long channel model equations)

Define $V_{DSP} = V_{GS} - V_T$, where V_T is the threshold voltage

NMOS	PMOS		
Triode Region (Linear)	Triode Region (Linear)		
$V_{GS} > V_T \& V_{DS} < V_{DSP},$	$V_{GS} < V_T \& V_{DS} > V_{DSP},$		
$I_D = \frac{W}{L} \cdot k' \left((V_{GS} - V_T) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right)$	$I_D = \frac{W}{L} \cdot k' \left((V_{GS} - V_T) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right)$		
Active Region (Saturation)	Active Region (Saturation)		
$V_{GS} > V_T \& V_{DS} \ge V_{DSP},$	$V_{GS} < V_T \& V_{DS} \le V_{DSP},$		
$I_D = \frac{W}{L} \cdot \frac{k'}{2} \cdot (V_{GS} - V_T)^2 \cdot \left[1 + \lambda \cdot V_{DS}\right]$	$I_D = \frac{W}{L} \cdot \frac{k'}{2} \cdot (V_{GS} - V_T)^2 \cdot [1 - \lambda \cdot V_{DS}]$		
Body Effect	Body Effect		
$V_T = V_{To} + \gamma \cdot \left(\sqrt{\left V_{SB} \right + 2\phi_F} - \sqrt{2\phi_F} \right)$	$V_T = V_{To} - \gamma \cdot \left(\sqrt{\left V_{SB} \right + 2\phi_F} - \sqrt{2\phi_F} \right)$		
$V_{GS} \le V_T, \ I_D = 0$	$V_{GS} \ge V_T, \ I_D = 0$		

1. If the output of a filter falls with frequency at a rate of -6dB/octave, how many dB per decade does the output fall?

One decade is $1/\log_{10}(2) = 3.3$ octave. A -6dB/octave function would fall at -6 \times 3.3 = -20 dB/decade.

2. Determine the Thévenin equivalent circuit for the network in the figure. Form the Thévenin equivalent across the terminals A'-A

$$\frac{5 - V_x}{4} + 1 = \frac{V_x}{10}$$

$$50 + 40 = 14V_x$$

$$V_{TH} = V_x = \frac{90}{14} = 6.42 \, V$$

$$R_{TH} = 10 \ k\Omega \mid\mid 4 \ k\Omega = 2.856 \ k\Omega$$

3. In the circuit shown, D_1 has a saturation current that is 10 times larger than that of D_2 .

- (a) If $I_1 = 10$ mA and $I_2 = 2$ mA, find the voltage V
- (b) If I_1 is maintained at 10 mA, what current I_2 is needed to obtain a value for V of 52 mV?

(a) Current through D₁ is: $10I_s e^{\frac{V_1 - V}{V_T}} = I_2$

The current through D₂ is: $I_S e^{\frac{V_1}{V_T}} = I_1 - I_2$; $I_S = (I_1 - I_2)e^{-\frac{V_1}{V_T}}$;

Substitute into equation for I_2 which leads to: $10(I_1 - I_2)e^{-\frac{V}{V_T}} = I_2$

$$V = -V_T \ln \left(\frac{I_2}{10(I_1 - I_2)} \right); \qquad V = -0.026 \ln \left(\frac{2}{10(8)} \right) = 95.9 \ mV$$

(b) For
$$V = 52$$
 mV, from: $10(I_1 - I_2)e^{-\frac{V}{V_T}} = I_2$, we get $I_2 = \frac{10I_1e^{-\frac{V}{V_T}}}{1 + 10e^{-\frac{V}{V_T}}}$

$$I_2 = \frac{10 \times 10 \times e^{-2}}{1 + 10e^{-2}} = 5.75 \text{ mA}$$

- 4. For the MOSFET circuit shown, $\mu WC_{ox}/2L = 80\mu A/V^2$, $V_T = 0.9 V$, $\lambda = 0$.
 - (a) What value must V_{GS} have to bring the device from the active region to the edge of the cutoff region?
 - (b) What value must V_{GS} have to bring the device from the active region to the edge of the triode region?

- (a) $I_D=0$, therefore, $V_{GS}=V_T=0.9 \text{ V}$
- (b) At boundary, $V_{DS} = V_{DSP}$

$$\begin{split} I_{DP} &= \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{DSP})^2 \\ I_{DP} &= \frac{12 - V_{DSP}}{20k\Omega} \\ \frac{12 - V_{DSP}}{20k\Omega} &= \left(80 \times 10^{-6}\right) \left(V_{DSP}\right)^2 \Rightarrow 12 - V_{DSP} - 1.6 V_{DSP}^2 = 0 \\ \text{or } V_{DSP}^2 + 0.625 V_{DSP} - 7.5 &= 0 \\ V_{DSP} &= -.3125 \pm \frac{\sqrt{\left(0.625\right)^2 + 30}}{2} \qquad throw \ out \ V_{DSP} < 0 \ value \\ \Rightarrow V_{DSP} &= 2.44 \ V \\ V_{GS} &= V_{DSP} + V_T = 2.44 + 0.9 = 3.34 \ V \end{split}$$

5. Give a CMOS realization of the function

$$\overline{Y} = A\overline{B} + C$$
.

Show the finished schematic and assume that input variables and complements are available to drive the system.

