NAME	N	ETID
	MIDTERM EXAM 2	
	(Closed book)	
ECE 442		April 12, 2007
		7:00 p.m. – 8:30 p.m.

<u>Instructions</u>: Write your name, and NetID where indicated. You are allowed to use one formula sheet $(8^{1/2} \times 11)$ and a calculator. This examination consists of 4 problems. Each problem is worth 25 points. Show all work in order to receive partial credit.

Problem 1	Problem 2	Problem 3	Problem 4	Total

Formula Sheet

DIODE

$$I_D = I_S (e^{V_D/V_T} - 1)$$
, where $V_T = \frac{k_B T}{q} = 26 \text{ mV}$

BIPOLAR (NPN forward active $I_B>0$, $V_{CE}>V_{CE,sat}$)

$$\begin{split} I_C &= I_S e^{V_{BE}/V_T} \cdot \left(1 + \frac{V_{CE}}{V_A}\right) \cong I_S e^{V_{BE}/V_T} \text{ where } V_T = \frac{k_B T}{q} = 26 \text{ mV} \\ I_C &= \alpha I_E \\ I_C &= \beta I_B \cdot \left(1 + \frac{V_{CE}}{V_A}\right) \cong \beta I_B \\ \alpha &= \frac{\beta}{\beta + 1} \end{split}$$

MOSFET (long channel model equations)

Define $V_{DSP} = V_{GS} - V_T$, where V_T is the threshold voltage

NMOS	DMOC	
NMOS	PMOS	
Triode Region (Linear)	Triode Region (Linear)	
$V_{GS} > V_T \& V_{DS} < V_{DSP},$	$V_{GS} < V_T & V_{DS} > V_{DSP},$	
$I_D = \frac{W}{L} \cdot k' \left((V_{GS} - V_T) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right)$	$I_D = \frac{W}{L} \cdot k' \left((V_{GS} - V_T) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right)$	
Active Region (Saturation)	Active Region (Saturation)	
$V_{GS} > V_T \& V_{DS} \ge V_{DSP},$	$V_{GS} < V_T & V_{DS} \le V_{DSP},$	
$I_D = \frac{W}{L} \cdot \frac{k'}{2} \cdot (V_{GS} - V_T)^2 \cdot [1 + \lambda \cdot V_{DS}]$	$I_D = \frac{W}{L} \cdot \frac{k'}{2} \cdot (V_{GS} - V_T)^2 \cdot \left[1 - \lambda \cdot V_{DS}\right]$	
Body Effect	Body Effect	
$V_T = V_{To} + \gamma \cdot \left(\sqrt{\left V_{SB} \right + 2\phi_F} - \sqrt{2\phi_F} \right)$	$V_T = V_{To} - \gamma \cdot \left(\sqrt{\left V_{SB} \right + 2\phi_F} - \sqrt{2\phi_F} \right)$	
$V_{GS} \leq V_T, \ I_D = 0$	$V_{GS} \ge V_T, \ I_D = 0$	

PROBLEM 1 [25 points]

For the amplifier shown $\mu WC_{ox}/2L = 3 \text{ mA/V}^2$, $\lambda = 0.02/\text{V}$, and $V_T = 1.0 \text{ V}$.

(a) Calculate V_{DSQ} when $V_{GSQ} = 1.5$ V (15 pts).

PROBLEM 1 (continued)

(b) Calculate the midband voltage gain for the stage (10 pts).

PROBLEM 2 [25 points]

For the circuit shown, assume that β is very large. Also $C_{\mu} = 1$ pF and $\omega_T = 5$ GHz. It is desired to have a dc collector current of 1 mA. Use $V_{BEON} = 0.7$ V and assume that all coupling and bypass capacitors are midband short circuits.

(a) Determine the proper value for R_E

PROBLEM 2 (continued)

$R_E = \underline{\hspace{1cm}}$
(b) The switch S_I is set in the off position (as shown in the figure) and the output is collected
at V_{ol} . What is the midband voltage gain?
$A_{MB} = \underline{\hspace{1cm}}$
(c) The switch S_I is now connected to V_{oI} and the output is collected at V_{o2} . What is the midband voltage gain?
middaid voitage gam:
$A_{MB} =$

PROBLEM 2 (continued)

ROBLEM 2 (Continued)	
(d) Next, the switch S_I is connected to V_{o2} and the output is collected at V_{oI} . What is the midband voltage gain?	
$A_{MB} = $	
(e) Determine the upper 3dB corner frequency for the common-emitter configuration of this amplifier.	S
•	

 $f_{3dB} = \underline{\hspace{1cm}}$

PROBLEM 3 [25 points]

Consider the MOSFET circuit shown below, with g_m =3 mA/V and r_{ds} =63 k Ω . Assume that C_{gs} =1 pF and C_{gd} =0.1 pF.

(a) Draw the midband equivalent circuit

PROBLEM 3 (continued)
(b) Calculate the midband voltage gain
(c) Draw the high-frequency equivalent circuit

PROBLEM 3 (continued)

(d) Calculate the upper corner frequency

(e) Calculate the unity current-gain frequency point f_T

PROBLEM 4 [25 points]

For the opamp circuit shown, determine the values of:

- (a) $v_1 \Rightarrow v_I = 0$ since it is a virtual ground
- $(b) \ i_1 \! \Rightarrow \!$
- $(c) \ i_2 \Longrightarrow$
- (d) $v_o \Longrightarrow$
- (e) $i_L \Rightarrow$
- (f) $i_o \Rightarrow$

